Stem Cell and Regenerative Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
Stem Cell and Regenerative Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.
Cell. 2015 Jul 30;162(3):564-79. doi: 10.1016/j.cell.2015.07.001.
During differentiation, human embryonic stem cells (hESCs) shut down the regulatory network conferring pluripotency in a process we designated pluripotent state dissolution (PSD). In a high-throughput RNAi screen using an inclusive set of differentiation conditions, we identify centrally important and context-dependent processes regulating PSD in hESCs, including histone acetylation, chromatin remodeling, RNA splicing, and signaling pathways. Strikingly, we detected a strong and specific enrichment of cell-cycle genes involved in DNA replication and G2 phase progression. Genetic and chemical perturbation studies demonstrate that the S and G2 phases attenuate PSD because they possess an intrinsic propensity toward the pluripotent state that is independent of G1 phase. Our data therefore functionally establish that pluripotency control is hardwired to the cell-cycle machinery, where S and G2 phase-specific pathways deterministically restrict PSD, whereas the absence of such pathways in G1 phase potentially permits the initiation of differentiation.
在分化过程中,人类胚胎干细胞 (hESC) 会关闭赋予多能性的调控网络,我们将这个过程称为多能状态解体 (PSD)。在使用涵盖所有分化条件的高通量 RNAi 筛选中,我们确定了调控 hESC 中 PSD 的中心重要且依赖于上下文的过程,包括组蛋白乙酰化、染色质重塑、RNA 剪接和信号通路。引人注目的是,我们检测到与 DNA 复制和 G2 期进展相关的细胞周期基因的强烈和特异性富集。遗传和化学扰动研究表明,S 和 G2 期会减弱 PSD,因为它们具有内在的多能状态倾向,而这种倾向独立于 G1 期。因此,我们的数据从功能上证明了多能性控制与细胞周期机制紧密相连,其中 S 和 G2 期特异性途径确定性地限制 PSD,而 G1 期缺乏这种途径则可能允许分化的开始。