Huang Ming-Der, Huang Anthony H C
Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529 (M.-D.H.); andCenter for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521 (A.H.C.H.)
Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529 (M.-D.H.); andCenter for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521 (A.H.C.H.).
Plant Physiol. 2015 Sep;169(1):453-70. doi: 10.1104/pp.15.00634. Epub 2015 Jul 31.
Plant cells contain subcellular lipid droplets with a triacylglycerol matrix enclosed by a layer of phospholipids and the small structural protein oleosin. Oleosins possess a conserved central hydrophobic hairpin of approximately 72 residues penetrating into the lipid droplet matrix and amphipathic amino- and carboxyl (C)-terminal peptides lying on the phospholipid surface. Bioinformatics of 1,000 oleosins of green algae and all plants emphasizing biological implications reveal five oleosin lineages: primitive (in green algae, mosses, and ferns), universal (U; all land plants), and three in specific organs or phylogenetic groups, termed seed low-molecular-weight (SL; seed plants), seed high-molecular-weight (SH; angiosperms), and tapetum (T; Brassicaceae) oleosins. Transition from one lineage to the next is depicted from lineage intermediates at junctions of phylogeny and organ distributions. Within a species, each lineage, except the T oleosin lineage, has one to four genes per haploid genome, only approximately two of which are active. Primitive oleosins already possess all the general characteristics of oleosins. U oleosins have C-terminal sequences as highly conserved as the hairpin sequences; thus, U oleosins including their C-terminal peptide exert indispensable, unknown functions. SL and SH oleosin transcripts in seeds are in an approximately 1:1 ratio, which suggests the occurrence of SL-SH oleosin dimers/multimers. T oleosins in Brassicaceae are encoded by rapidly evolved multitandem genes for alkane storage and transfer. Overall, oleosins have evolved to retain conserved hairpin structures but diversified for unique structures and functions in specific cells and plant families. Also, our studies reveal oleosin in avocado (Persea americana) mesocarp and no acyltransferase/lipase motifs in most oleosins.
植物细胞含有亚细胞脂质滴,其甘油三酯基质被一层磷脂和小结构蛋白油质蛋白包围。油质蛋白具有一个由大约72个残基组成的保守中央疏水发夹结构,该结构穿透脂质滴基质,还有位于磷脂表面的两亲性氨基和羧基(C)末端肽段。对绿藻和所有植物的1000种油质蛋白进行生物信息学分析,并着重探讨其生物学意义,结果揭示了五个油质蛋白谱系:原始谱系(存在于绿藻、苔藓和蕨类植物中)、通用谱系(U;所有陆地植物),以及在特定器官或系统发育类群中的三个谱系,分别称为种子低分子量(SL;种子植物)、种子高分子量(SH;被子植物)和绒毡层(T;十字花科)油质蛋白。从系统发育和器官分布的交界处的谱系中间体可以看出从一个谱系到下一个谱系的转变。在一个物种内,除了T油质蛋白谱系外,每个谱系在单倍体基因组中都有1到4个基因,其中只有大约两个是活跃的。原始油质蛋白已经具备了油质蛋白的所有一般特征。U油质蛋白的C末端序列与发夹序列一样高度保守;因此,包括其C末端肽段的U油质蛋白发挥着不可或缺的、未知的功能。种子中的SL和SH油质蛋白转录本比例约为1:1,这表明存在SL-SH油质蛋白二聚体/多聚体。十字花科中的T油质蛋白由快速进化的多串联基因编码,用于烷烃的储存和转移。总体而言,油质蛋白已经进化到保留保守的发夹结构,但在特定细胞和植物家族中具有独特的结构和功能。此外,我们的研究揭示了鳄梨(Persea americana)中果皮中的油质蛋白,并且大多数油质蛋白中没有酰基转移酶/脂肪酶基序。