Andersson Jesper L R, Sotiropoulos Stamatios N
FMRIB Centre, University of Oxford, UK.
FMRIB Centre, University of Oxford, UK.
Neuroimage. 2015 Nov 15;122:166-76. doi: 10.1016/j.neuroimage.2015.07.067. Epub 2015 Jul 30.
Diffusion MRI offers great potential in studying the human brain microstructure and connectivity. However, diffusion images are marred by technical problems, such as image distortions and spurious signal loss. Correcting for these problems is non-trivial and relies on having a mechanism that predicts what to expect. In this paper we describe a novel way to represent and make predictions about diffusion MRI data. It is based on a Gaussian process on one or several spheres similar to the Geostatistical method of "Kriging". We present a choice of covariance function that allows us to accurately predict the signal even from voxels with complex fibre patterns. For multi-shell data (multiple non-zero b-values) the covariance function extends across the shells which means that data from one shell is used when making predictions for another shell.
扩散磁共振成像在研究人类大脑微观结构和连通性方面具有巨大潜力。然而,扩散图像存在技术问题,如图像失真和虚假信号丢失。校正这些问题并非易事,并且依赖于有一种能够预测预期结果的机制。在本文中,我们描述了一种表示扩散磁共振成像数据并对其进行预测的新方法。它基于一个或多个球体上的高斯过程,类似于“克里金”的地质统计学方法。我们提出了一种协方差函数的选择,它使我们即使从具有复杂纤维模式的体素中也能准确预测信号。对于多壳数据(多个非零b值),协方差函数跨壳扩展,这意味着在对另一个壳进行预测时会使用来自一个壳的数据。