Quabs Julian, Bittner Nora, Caspers Svenja
Institute for Anatomy, Medical Faculty and University Hospital, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
Hum Brain Mapp. 2025 Jun 1;46(8):e70231. doi: 10.1002/hbm.70231.
The insular cortex is renowned for its multitude of functions, intricate structural connectivity patterns, and complex cytoarchitecture, yet a unified multimodal concept remains elusive. Microstructural parcellations provide a promising mediator to integrate connectome data into a combined structural-functional framework. While in the macaque insula, a clear relationship between anatomical connections and cytoarchitecture is well established, such correlation in the human insula remains unclear. By combining diffusion data from two large cohorts, including 914 and 204 subjects, respectively, as well as probabilistic tractography and the microstructural JulichBrain Atlas, we uncover how microstructural diversity reflects structural connectivity patterns in the human insula. Analyzing the connectivity of 16 cytoarchitectonic areas, we identified six clusters, two in the posterior and four in the anterior insula. Posterior clusters exhibited strong connectivity with temporal, occipital, and parietal areas encompassing auditory, visual, and somatosensory systems. Conversely, anterior clusters were specifically linked with (orbito)frontal areas, such as Broca's area or frontal opercular areas. Together, our data demonstrate that structural connectivity differences are reflected by fundamental principles of microstructural organization in the human insula. Additional whole-brain connectivity analyses reveal that two distinct areas within the anterior (Id6) and posterior (Id3) human insula may serve as integrative hubs, mediating between higher-order cognitive and limbic systems, as well as across sensory modalities. All clusters are openly available in MNI space to support future multimodal studies addressing the relations between cytoarchitecture, structure, functions, and pathologies in this complex region of the human neocortex.
岛叶皮质因其众多功能、复杂的结构连接模式和复杂的细胞结构而闻名,但一个统一的多模态概念仍然难以捉摸。微观结构分区提供了一个有前景的媒介,可将连接组数据整合到一个综合的结构-功能框架中。虽然在猕猴岛叶中,解剖连接与细胞结构之间的明确关系已得到充分确立,但人类岛叶中的这种相关性仍不清楚。通过结合分别来自两个大型队列(包括914名和204名受试者)的扩散数据,以及概率性纤维束成像和微观结构的朱利希脑图谱,我们揭示了微观结构多样性如何反映人类岛叶中的结构连接模式。分析16个细胞构筑区域的连接性,我们识别出六个簇,两个在岛叶后部,四个在岛叶前部。后部簇与包括听觉、视觉和体感系统在内的颞叶、枕叶和顶叶区域表现出强烈连接。相反,前部簇则与(眶)额叶区域,如布洛卡区或额盖区有特定联系。总之,我们的数据表明,结构连接差异由人类岛叶微观结构组织的基本原理所反映。额外的全脑连接性分析显示,人类岛叶前部(Id6)和后部(Id3)内的两个不同区域可能作为整合枢纽,在高阶认知和边缘系统之间以及跨感觉模态进行调解。所有簇在MNI空间中均可公开获取,以支持未来针对人类新皮质这一复杂区域中细胞结构、结构、功能和病理之间关系的多模态研究。