Suppr超能文献

通过格兰杰因果关系测量的癫痫中的神经连接性。

Neural Connectivity in Epilepsy as Measured by Granger Causality.

作者信息

Coben Robert, Mohammad-Rezazadeh Iman

机构信息

NeuroRehabilitation & Neuropsychological Services , Massapequa Park, NY , USA ; Integrated Neuroscience Services , Fayetteville, AR , USA.

Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles , Los Angeles, CA , USA.

出版信息

Front Hum Neurosci. 2015 Jul 14;9:194. doi: 10.3389/fnhum.2015.00194. eCollection 2015.

Abstract

Epilepsy is a chronic neurological disorder characterized by repeated seizures or excessive electrical discharges in a group of brain cells. Prevalence rates include about 50 million people worldwide and 10% of all people have at least one seizure at one time in their lives. Connectivity models of epilepsy serve to provide a deeper understanding of the processes that control and regulate seizure activity. These models have received initial support and have included measures of EEG, MEG, and MRI connectivity. Preliminary findings have shown regions of increased connectivity in the immediate regions surrounding the seizure foci and associated low connectivity in nearby regions and pathways. There is also early evidence to suggest that these patterns change during ictal events and that these changes may even by related to the occurrence or triggering of seizure events. We present data showing how Granger causality can be used with EEG data to measure connectivity across brain regions involved in ictal events and their resolution. We have provided two case examples as a demonstration of how to obtain and interpret such data. EEG data of ictal events are processed, converted to independent components and their dipole localizations, and these are used to measure causality and connectivity between these locations. Both examples have shown hypercoupling near the seizure foci and low causality across nearby and associated neuronal pathways. This technique also allows us to track how these measures change over time and during the ictal and post-ictal periods. Areas for further research into this technique, its application to epilepsy, and the formation of more effective therapeutic interventions are recommended.

摘要

癫痫是一种慢性神经系统疾病,其特征为反复癫痫发作或一组脑细胞中出现过度放电。全球患病率约为5000万人,10%的人一生中至少有过一次癫痫发作。癫痫的连接性模型有助于更深入地了解控制和调节癫痫活动的过程。这些模型已获得初步支持,包括脑电图(EEG)、脑磁图(MEG)和磁共振成像(MRI)连接性测量。初步研究结果显示,癫痫病灶周围直接区域的连接性增加,而附近区域和神经通路的连接性较低。也有早期证据表明,这些模式在发作期会发生变化,甚至可能与癫痫发作事件的发生或触发有关。我们展示的数据表明,格兰杰因果关系可如何与脑电图数据一起用于测量参与发作期事件及其缓解过程的脑区之间的连接性。我们提供了两个案例作为如何获取和解释此类数据的示范。对发作期事件的脑电图数据进行处理,转换为独立成分及其偶极定位,并用这些来测量这些位置之间的因果关系和连接性。两个案例均显示癫痫病灶附近存在超耦合,而附近及相关神经通路的因果关系较低。该技术还使我们能够追踪这些测量值如何随时间以及在发作期和发作后期发生变化。建议对该技术、其在癫痫治疗中的应用以及形成更有效的治疗干预措施进行进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca36/4500918/a12a9c1ff36d/fnhum-09-00194-g001.jpg

相似文献

1
Neural Connectivity in Epilepsy as Measured by Granger Causality.
Front Hum Neurosci. 2015 Jul 14;9:194. doi: 10.3389/fnhum.2015.00194. eCollection 2015.
2
Multimodal effective connectivity analysis reveals seizure focus and propagation in musicogenic epilepsy.
Neuroimage. 2015 Jun;113:70-7. doi: 10.1016/j.neuroimage.2015.03.027. Epub 2015 Mar 20.
3
It's All About the Networks.
Epilepsy Curr. 2019 May-Jun;19(3):165-167. doi: 10.1177/1535759719843301. Epub 2019 Apr 29.
4
Nonlinear effective connectivity measure based on adaptive Neuro Fuzzy Inference System and Granger Causality.
Neuroimage. 2018 Nov 1;181:382-394. doi: 10.1016/j.neuroimage.2018.07.024. Epub 2018 Jul 19.
6
Seizure Onset Zone Localization from Ictal High-Density EEG in Refractory Focal Epilepsy.
Brain Topogr. 2017 Mar;30(2):257-271. doi: 10.1007/s10548-016-0537-8. Epub 2016 Nov 16.
9
The effective connectivity of the seizure onset zone and ictal perfusion changes in amygdala kindled rhesus monkeys.
Neuroimage Clin. 2016 Jun 1;12:252-61. doi: 10.1016/j.nicl.2016.05.020. eCollection 2016.

引用本文的文献

1
Altered Directed-Connectivity Network in Temporal Lobe Epilepsy: A MEG Study.
Sensors (Basel). 2025 Feb 22;25(5):1356. doi: 10.3390/s25051356.
3
Virtual resection evaluation based on sEEG propagation network for drug-resistant epilepsy.
Sci Rep. 2024 Oct 26;14(1):25542. doi: 10.1038/s41598-024-77216-w.
5
The applied principles of EEG analysis methods in neuroscience and clinical neurology.
Mil Med Res. 2023 Dec 19;10(1):67. doi: 10.1186/s40779-023-00502-7.
6
Editorial: Autonomic nervous system and cardiovascular risk.
Front Neurosci. 2023 Apr 4;17:1185320. doi: 10.3389/fnins.2023.1185320. eCollection 2023.
8
Assessing rheoencephalography dynamics through analysis of the interactions among brain and cardiac networks during general anesthesia.
Front Netw Physiol. 2022 Aug 29;2:912733. doi: 10.3389/fnetp.2022.912733. eCollection 2022.
9
Localizing targets for neuromodulation in drug-resistant epilepsy using intracranial EEG and computational model.
Front Physiol. 2022 Oct 20;13:1015838. doi: 10.3389/fphys.2022.1015838. eCollection 2022.
10
Brain and brain-heart Granger causality during wakefulness and sleep.
Front Neurosci. 2022 Sep 15;16:927111. doi: 10.3389/fnins.2022.927111. eCollection 2022.

本文引用的文献

1
Detection of epileptic seizure event and onset using EEG.
Biomed Res Int. 2014;2014:450573. doi: 10.1155/2014/450573. Epub 2014 Jan 29.
4
Impaired and facilitated functional networks in temporal lobe epilepsy.
Neuroimage Clin. 2013 Jun 25;2:862-72. doi: 10.1016/j.nicl.2013.06.011. eCollection 2013.
5
Neurophysiology of juvenile myoclonic epilepsy: EEG-based network and graph analysis of the interictal and immediate preictal states.
Epilepsy Res. 2013 Oct;106(3):357-69. doi: 10.1016/j.eplepsyres.2013.06.017. Epub 2013 Jul 22.
6
Focal corticothalamic sources during generalized absence seizures: a MEG study.
Epilepsy Res. 2013 Sep;106(1-2):113-22. doi: 10.1016/j.eplepsyres.2013.05.006. Epub 2013 Jun 10.
7
Potential use and challenges of functional connectivity mapping in intractable epilepsy.
Front Neurol. 2013 May 22;4:39. doi: 10.3389/fneur.2013.00039. eCollection 2013.
8
Epileptic neuronal networks: methods of identification and clinical relevance.
Front Neurol. 2013 Mar 1;4:8. doi: 10.3389/fneur.2013.00008. eCollection 2013.
9
Connectomics and epilepsy.
Curr Opin Neurol. 2013 Apr;26(2):186-94. doi: 10.1097/WCO.0b013e32835ee5b8.
10
More discussions for granger causality and new causality measures.
Cogn Neurodyn. 2012 Feb;6(1):33-42. doi: 10.1007/s11571-011-9175-8. Epub 2011 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验