Suppr超能文献

线粒体功能障碍对表皮干细胞的多效性年龄依赖性影响。

Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells.

作者信息

Velarde Michael C, Demaria Marco, Melov Simon, Campisi Judith

机构信息

Buck Institute for Research on Aging, Novato, CA 94945.

Buck Institute for Research on Aging, Novato, CA 94945 Lawrence Berkeley National Laboratory, Berkeley, CA 94720

出版信息

Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10407-12. doi: 10.1073/pnas.1505675112. Epub 2015 Aug 3.

Abstract

Tissue homeostasis declines with age partly because stem/progenitor cells fail to self-renew or differentiate. Because mitochondrial damage can accelerate aging, we tested the hypothesis that mitochondrial dysfunction impairs stem cell renewal or function. We developed a mouse model, Tg(KRT14-cre/Esr1) (20Efu/J) × Sod2 (tm1Smel) , that generates mitochondrial oxidative stress in keratin 14-expressing epidermal stem/progenitor cells in a temporally controlled manner owing to deletion of Sod2, a nuclear gene that encodes the mitochondrial antioxidant enzyme superoxide dismutase 2 (Sod2). Epidermal Sod2 loss induced cellular senescence, which irreversibly arrested proliferation in a fraction of keratinocytes. Surprisingly, in young mice, Sod2 deficiency accelerated wound closure, increasing epidermal differentiation and reepithelialization, despite the reduced proliferation. In contrast, at older ages, Sod2 deficiency delayed wound closure and reduced epidermal thickness, accompanied by epidermal stem cell exhaustion. In young mice, Sod2 deficiency accelerated epidermal thinning in response to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate, phenocopying the reduced regeneration of older Sod2-deficient skin. Our results show a surprising beneficial effect of mitochondrial dysfunction at young ages, provide a potential mechanism for the decline in epidermal regeneration at older ages, and identify a previously unidentified age-dependent role for mitochondria in skin quality and wound closure.

摘要

组织稳态会随着年龄增长而下降,部分原因是干细胞/祖细胞无法自我更新或分化。由于线粒体损伤会加速衰老,我们测试了线粒体功能障碍会损害干细胞更新或功能这一假设。我们构建了一种小鼠模型,即Tg(KRT14-cre/Esr1)(20Efu/J)×Sod2(tm1Smel),由于编码线粒体抗氧化酶超氧化物歧化酶2(Sod2)的核基因Sod2缺失,该模型能以时间可控的方式在表达角蛋白14的表皮干细胞/祖细胞中产生线粒体氧化应激。表皮Sod2缺失会诱导细胞衰老,这会使一部分角质形成细胞的增殖不可逆地停滞。令人惊讶的是,在年轻小鼠中,尽管增殖减少,但Sod2缺乏会加速伤口愈合,增加表皮分化和重新上皮化。相比之下,在老年时,Sod2缺乏会延迟伤口愈合并降低表皮厚度,同时伴有表皮干细胞耗竭。在年轻小鼠中,Sod2缺乏会加速对肿瘤启动子12-O-十四酰佛波醇-13-乙酸酯的反应导致表皮变薄,模拟了老年Sod2缺陷皮肤再生减少的情况。我们的结果显示了年轻时线粒体功能障碍的惊人有益作用,为老年时表皮再生下降提供了一种潜在机制,并确定了线粒体在皮肤质量和伤口愈合中以前未被识别的年龄依赖性作用。

相似文献

1
Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10407-12. doi: 10.1073/pnas.1505675112. Epub 2015 Aug 3.
3
Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion.
PLoS One. 2009;4(5):e5488. doi: 10.1371/journal.pone.0005488. Epub 2009 May 8.
4
Mitochondrial oxidative stress in the retinal pigment epithelium leads to localized retinal degeneration.
Invest Ophthalmol Vis Sci. 2014 Jul 1;55(7):4613-27. doi: 10.1167/iovs.14-14633.
6
Sod2 overexpression preserves myoblast mitochondrial mass and function, but not muscle mass with aging.
Aging Cell. 2009 Jun;8(3):296-310. doi: 10.1111/j.1474-9726.2009.00477.x. Epub 2009 Apr 9.
7
Sod2 haploinsufficiency does not accelerate aging of telomere dysfunctional mice.
Aging (Albany NY). 2009 Mar 5;1(3):303-15. doi: 10.18632/aging.100030.
9
Loss of parietal cell superoxide dismutase leads to gastric oxidative stress and increased injury susceptibility in mice.
Am J Physiol Gastrointest Liver Physiol. 2011 Sep;301(3):G537-46. doi: 10.1152/ajpgi.00177.2011. Epub 2011 Jun 30.

引用本文的文献

1
Endometrial Aging and Reproductive Decline: The Central Role of Mitochondrial Dysfunction.
Int J Mol Sci. 2025 May 24;26(11):5060. doi: 10.3390/ijms26115060.
3
New insights into the role of cellular senescence and chronic wounds.
Front Endocrinol (Lausanne). 2024 Nov 4;15:1400462. doi: 10.3389/fendo.2024.1400462. eCollection 2024.
4
A comparative study of the established methods and evaluation of rat trauma models.
Animal Model Exp Med. 2025 Mar;8(3):501-510. doi: 10.1002/ame2.12479. Epub 2024 Oct 22.
6
Energy metabolism as therapeutic target for aged wound repair by engineered extracellular vesicle.
Sci Adv. 2024 Apr 12;10(15):eadl0372. doi: 10.1126/sciadv.adl0372.
7
Dermatologic Manifestations of Mitochondrial Dysfunction: A Review of the Literature.
Int J Mol Sci. 2024 Mar 14;25(6):3303. doi: 10.3390/ijms25063303.
8
Fat Biology in Triple-Negative Breast Cancer: Immune Regulation, Fibrosis, and Senescence.
J Obes Metab Syndr. 2023 Dec 30;32(4):312-321. doi: 10.7570/jomes23044. Epub 2023 Nov 28.
9
Senescent cells at the crossroads of aging, disease, and tissue homeostasis.
Aging Cell. 2024 Jan;23(1):e13988. doi: 10.1111/acel.13988. Epub 2023 Sep 20.

本文引用的文献

1
An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA.
Dev Cell. 2014 Dec 22;31(6):722-33. doi: 10.1016/j.devcel.2014.11.012. Epub 2014 Dec 11.
2
Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging.
Aging Cell. 2015 Feb;14(1):1-7. doi: 10.1111/acel.12287. Epub 2014 Nov 14.
3
Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging.
Redox Biol. 2014 Jul 27;2:936-44. doi: 10.1016/j.redox.2014.07.005. eCollection 2014.
4
Emerging interactions between skin stem cells and their niches.
Nat Med. 2014 Aug;20(8):847-56. doi: 10.1038/nm.3643.
5
Transcriptional regulation of wound inflammation.
Semin Immunol. 2014 Aug;26(4):321-8. doi: 10.1016/j.smim.2014.01.005. Epub 2014 Feb 17.
6
Programmed cell senescence during mammalian embryonic development.
Cell. 2013 Nov 21;155(5):1104-18. doi: 10.1016/j.cell.2013.10.019. Epub 2013 Nov 14.
7
Senescence is a developmental mechanism that contributes to embryonic growth and patterning.
Cell. 2013 Nov 21;155(5):1119-30. doi: 10.1016/j.cell.2013.10.041. Epub 2013 Nov 14.
8
Photoaging.
J Invest Dermatol. 2013 Jul 1;133(E1):E2-6. doi: 10.1038/skinbio.2013.176.
9
Mitochondrial DNA damage as a biomarker for ultraviolet radiation exposure and oxidative stress.
Br J Dermatol. 2013 Jul;169 Suppl 2:9-14. doi: 10.1111/bjd.12207.
10
Mechanisms that regulate stem cell aging and life span.
Cell Stem Cell. 2013 Feb 7;12(2):152-65. doi: 10.1016/j.stem.2013.01.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验