Srikulnath Kornsorn, Uno Yoshinobu, Nishida Chizuko, Ota Hidetoshi, Matsuda Yoichi
Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan; Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, Thailand; Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, Thailand.
Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan.
PLoS One. 2015 Aug 4;10(8):e0134829. doi: 10.1371/journal.pone.0134829. eCollection 2015.
The Hokou gecko (Gekko hokouensis: Gekkonidae, Gekkota, Squamata) has the chromosome number 2n = 38, with no microchromosomes. For molecular cytogenetic characterization of the gekkotan karyotype, we constructed a cytogenetic map for G. hokouensis, which retains the ancestral karyotype of Gekkota, with 86 functional genes, and compared it with cytogenetic maps for four Toxicofera species that have many microchromosomes (Elaphe quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, and Anolis carolinensis) and that for a lacertid species (Lacerta agilis) with only one pair of autosomal microchromosomes. Ten pairs of G. hokouensis chromosomes [GHO1, 2, 3, Z(4), 6, 7, 8, 13, 14, and 15] showed highly conserved linkage homology with macrochromosomes and/or macrochromosome arms of the four Toxicofera species and corresponded to eight L. agilis macrochromosomes (LAG). However, GHO5, GHO9, GHO10, GHO11, and LAG6 were composed of chromosome segments that have a homology with Toxicofera microchromosomes, and no homology was found in the chromosomes between G. hokouensis and L. agilis. These results suggest that repeated fusions of microchromosomes may have occurred independently in each lineage of Gekkota and Lacertidae, leading to the disappearance of microchromosomes and appearance of small-sized macrochromosomes.
河口壁虎(Gekko hokouensis:壁虎科,壁虎亚目,有鳞目)的染色体数目为2n = 38,没有微小染色体。为了对壁虎科核型进行分子细胞遗传学特征分析,我们构建了河口壁虎的细胞遗传学图谱,该图谱保留了壁虎亚目的祖先核型,包含86个功能基因,并将其与四种有许多微小染色体的毒蜥类物种(四线锦蛇、泽巨蜥、红纹钝头蛇和绿安乐蜥)以及只有一对常染色体微小染色体的蜥蜴科物种(捷蜥蜴)的细胞遗传学图谱进行了比较。河口壁虎的十对染色体[GHO1、2、3、Z(4)、6、7、8、13、14和15]与四种毒蜥类物种的大染色体和/或大染色体臂显示出高度保守的连锁同源性,并对应于八条捷蜥蜴的大染色体(LAG)。然而,GHO5、GHO9、GHO10、GHO11和LAG6由与毒蜥类微小染色体具有同源性的染色体片段组成,河口壁虎和捷蜥蜴的染色体之间未发现同源性。这些结果表明,微小染色体的重复融合可能在壁虎科和蜥蜴科的每个谱系中独立发生,导致微小染色体消失和小尺寸大染色体出现。