Mathison Angela, Escande Carlos, Calvo Ezequiel, Seo Seungmae, White Thomas, Salmonson Ann, Faubion William A, Buttar Navtej, Iovanna Juan, Lomberk Gwen, Chini Eduardo N, Urrutia Raul
Laboratory of Epigenetics and Chromatin Dynamics (A.M., A.S., W.A.F., N.B., G.L., R.U.), Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, Medicine, Epigenomics Translation Program Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905; Metabolic Diseases and Aging Laboratory (C.E.), Institut Pasteur Montevideo, Montevideo 11400, Uruguay; Department of Anesthesia and Robert and Arlene Kogod Center on Aging (C.E., T.W., E.N.C.), Mayo Clinic, Rochester, Minnesota 55905; Endocrinology and Nephrology (E.C.), Centre Hospitalier Universitaire de Québec Research Center and Laval University, Québec, Québec, G1V 4G2, Canada; Lieber Institute for Brain Development (S.S.), Baltimore, Maryland 21205; and Centre de Recherche en Cancérologie de Marseille (J.I.), INSERM U1068, Centre Nationale de la Recherche Scientifique Unité Mixte de Recherche 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, 13288, France.
Endocrinology. 2015 Oct;156(10):3581-95. doi: 10.1210/en.2015-1145. Epub 2015 Aug 6.
We have previously shown that amino acid changes in the human Kruppel-Like Factor (KLF) 11 protein is associated with the development of maturity onset diabetes of the young VII, whereas complete inactivation of this pathway by the -331 human insulin mutation causes neonatal diabetes mellitus. Here, we report that Klf11-/- mice have decreased circulating insulin levels, alterations in the control of blood glucose and body weight, as well as serum dyslipidemia, but do not develop diabetes. Functional assays using ex vivo liver tissue sections demonstrate that Klf11-/- mice display increased insulin sensitivity. Genome-wide experiments validated by pathway-specific quantitative PCR arrays reveal that the Klf11-/- phenotype associates to alterations in the regulation of gene networks involved in lipid metabolism, in particular those regulated by peroxisome proliferator-activated receptor-γ. Combined, these results demonstrate that the major phenotype given by the whole-body deletion of Klf11 in mouse is not diabetes but increased insulin sensitivity, likely due to altered transcriptional regulation in target tissues. The absence of diabetes in the Klf11-/- mouse either indicates an interspecies difference for the role of this transcription factor in metabolic homeostasis between mouse and humans, or potentially highlights the fact that other molecular factors can compensate for its absence. Nevertheless, the data of this study, gathered at the whole-organism level, further support a role for KLF11 in metabolic processes like insulin sensitivity, which regulation is critical in several forms of diabetes.
我们之前已经表明,人类 Kruppel 样因子(KLF)11 蛋白中的氨基酸变化与青年发病型糖尿病 VII 的发生有关,而 -331 人类胰岛素突变导致该通路完全失活会引发新生儿糖尿病。在此,我们报告 Klf11-/- 小鼠循环胰岛素水平降低、血糖和体重控制改变以及血清血脂异常,但未患糖尿病。使用离体肝组织切片进行的功能测定表明,Klf11-/- 小鼠表现出更高的胰岛素敏感性。通过通路特异性定量 PCR 阵列验证的全基因组实验表明,Klf11-/- 表型与参与脂质代谢的基因网络调控改变有关,特别是那些受过氧化物酶体增殖物激活受体 -γ 调控的基因网络。综合这些结果表明,小鼠全身缺失 Klf11 产生的主要表型不是糖尿病,而是胰岛素敏感性增加,这可能是由于靶组织中转录调控改变所致。Klf11-/- 小鼠未患糖尿病,这要么表明该转录因子在小鼠和人类代谢稳态中的作用存在种间差异,要么可能突出了其他分子因子可以弥补其缺失这一事实。尽管如此,本研究在全生物体水平收集的数据进一步支持了 KLF11 在胰岛素敏感性等代谢过程中的作用,其调控在多种形式的糖尿病中至关重要。