Suppr超能文献

手术切除对人体胃慢波传导的影响,通过高分辨率电标测和计算机模拟确定。

The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling.

作者信息

Du P, Hameed A, Angeli T R, Lahr C, Abell T L, Cheng L K, O'Grady G

机构信息

Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.

Division of Surgery, Westmead Hospital, Sydney, NSW, Australia.

出版信息

Neurogastroenterol Motil. 2015 Oct;27(10):1409-22. doi: 10.1111/nmo.12637. Epub 2015 Aug 6.

Abstract

BACKGROUND

Gastric contractions are coordinated by slow waves, generated by interstitial cells of Cajal (ICC). Gastric surgery affects slow wave conduction, potentially contributing to postoperative gastric dysfunction. However, the impact of gastric cuts on slow waves has not been comprehensively evaluated. This study aimed to define consequences of surgical excisions on gastric slow waves by applying high-resolution (HR) electrical mapping and in silico modeling.

METHODS

Patients undergoing gastric stimulator implantation (n = 10) underwent full-thickness stapled excisions (25 × 15 mm, distal corpus) for histological evaluation, enabling HR mapping (256 electrodes; 36 cm(2) ) over and adjacent to excisions. A biophysically based in silico model of bidirectionally coupled ICC networks was developed and applied to investigate the underlying conduction mechanisms and importance of excision orientation.

KEY RESULTS

Normal gastric slow waves propagated aborally (3.0 ± 0.2 cpm). Excisions induced complete conduction block and wavelets that rotated around blocks, then propagated rapidly circumferentially distal to the blocks (8.5 ± 1.2 vs normal 3.6 ± 0.4 mm/s; p < 0.01). This 'conduction anisotropy' homeostatically restored antegrade propagating gastric wavefronts distal to excisions. Excisions were associated with complex dysrhythmias in five patients: retrograde propagation (3/10), ectopics (3/10), functional blocks (2/10), and collisions (1/10). Simulations demonstrated conduction anisotropy emerged from bidirectional coupling within ICC layers and showed transverse incision length and orientation correlated with the degree of conduction distortion.

CONCLUSIONS & INFERENCES: Orienting incisions in the longitudinal gastric axis causes least disruption to electrical conduction and motility. However, if transverse incisions are made, a homeostatic mechanism of gastric conduction anisotropy compensates by restoring aborally propagating wavefronts. Complex dysrhythmias accompanying excisions could modify postoperative recovery in susceptible patients.

摘要

背景

胃收缩由Cajal间质细胞(ICC)产生的慢波协调。胃部手术会影响慢波传导,这可能导致术后胃功能障碍。然而,胃切口对慢波的影响尚未得到全面评估。本研究旨在通过应用高分辨率(HR)电标测和计算机模拟来确定手术切除对胃慢波的影响。

方法

接受胃刺激器植入的患者(n = 10)接受全层吻合器切除(25×15 mm,胃体远端)以进行组织学评估,从而能够对切除部位及其邻近区域进行HR标测(256个电极;36 cm²)。开发了基于生物物理的双向耦合ICC网络计算机模型,并应用该模型研究潜在的传导机制以及切除方向的重要性。

主要结果

正常胃慢波向口外传播(3.0±0.2次/分钟)。切除导致完全传导阻滞和围绕阻滞旋转的小波,然后在阻滞远端沿圆周快速传播(8.5±1.2 vs正常3.6±0.4 mm/s;p<0.01)。这种“传导各向异性”以稳态方式恢复了切除部位远端向前传播的胃波前。切除与5例患者的复杂心律失常有关:逆行传播(3/10)、异位搏动(3/10)、功能性阻滞(2/10)和碰撞(1/10)。模拟表明,传导各向异性源于ICC层内的双向耦合,并且显示横向切口长度和方向与传导畸变程度相关。

结论与推论

沿胃纵轴方向进行切口对电传导和运动的干扰最小。然而,如果进行横向切口,胃传导各向异性的稳态机制会通过恢复向口外传播的波前来进行补偿。切除伴随的复杂心律失常可能会改变易感患者的术后恢复情况。

相似文献

2
Mapping the rat gastric slow-wave conduction pathway: bridging in vitro and in vivo methods, revealing a loosely coupled region in the distal stomach.
Am J Physiol Gastrointest Liver Physiol. 2024 Aug 1;327(2):G254-G266. doi: 10.1152/ajpgi.00069.2024. Epub 2024 Jun 11.
3
Gastric ablation as a novel technique for modulating electrical conduction in the in vivo stomach.
Am J Physiol Gastrointest Liver Physiol. 2021 Apr 1;320(4):G573-G585. doi: 10.1152/ajpgi.00448.2020. Epub 2021 Jan 20.
4
Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model.
Am J Physiol Gastrointest Liver Physiol. 2022 Apr 1;322(4):G431-G445. doi: 10.1152/ajpgi.00332.2021. Epub 2022 Feb 9.
5
Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias.
Neurogastroenterol Motil. 2012 Jul;24(7):e299-312. doi: 10.1111/j.1365-2982.2012.01932.x.
6
Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling.
Am J Physiol Gastrointest Liver Physiol. 2016 Nov 1;311(5):G895-G902. doi: 10.1152/ajpgi.00255.2016. Epub 2016 Sep 22.
8
Slow-wave coupling across a gastroduodenal anastomosis as a mechanism for postsurgical gastric dysfunction: evidence for a "gastrointestinal aberrant pathway".
Am J Physiol Gastrointest Liver Physiol. 2019 Aug 1;317(2):G141-G146. doi: 10.1152/ajpgi.00002.2019. Epub 2019 Jun 6.
9
Localized bioelectrical conduction block from radiofrequency gastric ablation persists after healing: safety and feasibility in a recovery model.
Am J Physiol Gastrointest Liver Physiol. 2022 Dec 1;323(6):G640-G652. doi: 10.1152/ajpgi.00116.2022. Epub 2022 Oct 18.
10
Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping.
Gastroenterology. 2012 Sep;143(3):589-598.e3. doi: 10.1053/j.gastro.2012.05.036. Epub 2012 May 27.

引用本文的文献

2
Vectorgastrogram: dynamic trajectory and recurrence quantification analysis to assess slow wave vector movement in healthy subjects.
Phys Eng Sci Med. 2024 Jun;47(2):663-677. doi: 10.1007/s13246-024-01396-y. Epub 2024 Mar 4.
3
Localized bioelectrical conduction block from radiofrequency gastric ablation persists after healing: safety and feasibility in a recovery model.
Am J Physiol Gastrointest Liver Physiol. 2022 Dec 1;323(6):G640-G652. doi: 10.1152/ajpgi.00116.2022. Epub 2022 Oct 18.
4
Systematic review of small intestine pacing parameters for modulation of gut function.
Neurogastroenterol Motil. 2023 Jan;35(1):e14473. doi: 10.1111/nmo.14473. Epub 2022 Oct 4.
6
Gastric ablation as a novel technique for modulating electrical conduction in the in vivo stomach.
Am J Physiol Gastrointest Liver Physiol. 2021 Apr 1;320(4):G573-G585. doi: 10.1152/ajpgi.00448.2020. Epub 2021 Jan 20.
7
Current applications of mathematical models of the interstitial cells of Cajal in the gastrointestinal tract.
WIREs Mech Dis. 2021 Mar;13(2):e1507. doi: 10.1002/wsbm.1507. Epub 2020 Oct 7.
9
Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities.
Front Physiol. 2018 Jan 15;8:1136. doi: 10.3389/fphys.2017.01136. eCollection 2017.

本文引用的文献

1
Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients With Chronic Unexplained Nausea and Vomiting.
Gastroenterology. 2015 Jul;149(1):56-66.e5. doi: 10.1053/j.gastro.2015.04.003. Epub 2015 Apr 8.
2
Multi-channel wireless mapping of gastrointestinal serosal slow wave propagation.
Neurogastroenterol Motil. 2015 Apr;27(4):580-5. doi: 10.1111/nmo.12515. Epub 2015 Jan 20.
3
A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry.
Math Med Biol. 2015 Dec;32(4):405-23. doi: 10.1093/imammb/dqu023. Epub 2014 Dec 30.
4
Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons.
Clin Exp Pharmacol Physiol. 2014 Oct;41(10):854-62. doi: 10.1111/1440-1681.12288.
5
A simplified biophysical cell model for gastric slow wave entrainment simulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6547-50. doi: 10.1109/EMBC.2013.6611055.
6
Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside.
Physiology (Bethesda). 2013 Sep;28(5):310-7. doi: 10.1152/physiol.00022.2013.
7
The bioelectrical basis and validity of gastrointestinal extracellular slow wave recordings.
J Physiol. 2013 Sep 15;591(18):4567-79. doi: 10.1113/jphysiol.2013.254292. Epub 2013 May 27.
8
Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility.
Wiley Interdiscip Rev Syst Biol Med. 2013 Jul-Aug;5(4):481-93. doi: 10.1002/wsbm.1218. Epub 2013 Mar 5.
9
Comparison of filtering methods for extracellular gastric slow wave recordings.
Neurogastroenterol Motil. 2013 Jan;25(1):79-83. doi: 10.1111/nmo.12012. Epub 2012 Sep 13.
10
Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias.
Neurogastroenterol Motil. 2012 Jul;24(7):e299-312. doi: 10.1111/j.1365-2982.2012.01932.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验