Suppr超能文献

美国国立心肺血液研究所血脂降低药物与饮食网络(GOLDN)参与者中甘油三酯对高脂餐反应的全基因组关联研究。

Genome-wide association study of triglyceride response to a high-fat meal among participants of the NHLBI Genetics of Lipid Lowering Drugs and Diet Network (GOLDN).

作者信息

Wojczynski Mary K, Parnell Laurence D, Pollin Toni I, Lai Chao Q, Feitosa Mary F, O'Connell Jeff R, Frazier-Wood Alexis C, Gibson Quince, Aslibekyan Stella, Ryan Kathy A, Province Michael A, Tiwari Hemant K, Ordovas Jose M, Shuldiner Alan R, Arnett Donna K, Borecki Ingrid B

机构信息

Department of Genetics, Washington University School of Medicine, St. Louis, MO.

Nutrition and Genomics Laboratory, Jean Mayer-US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA.

出版信息

Metabolism. 2015 Oct;64(10):1359-71. doi: 10.1016/j.metabol.2015.07.001. Epub 2015 Jul 3.

Abstract

OBJECTIVE

The triglyceride (TG) response to a high-fat meal (postprandial lipemia, PPL) affects cardiovascular disease risk and is influenced by genes and environment. Genes involved in lipid metabolism have dominated genetic studies of PPL TG response. We sought to elucidate common genetic variants through a genome-wide association (GWA) study in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN).

METHODS

The GOLDN GWAS discovery sample consisted of 872 participants within families of European ancestry. Genotypes for 2,543,887 variants were measured or imputed from HapMap. Replication of our top results was performed in the Heredity and Phenotype Intervention (HAPI) Heart Study (n = 843). PPL TG response phenotypes were constructed from plasma TG measured at baseline (fasting, 0 hour), 3.5 and 6 hours after a high-fat meal, using a random coefficient regression model. Association analyses were adjusted for covariates and principal components, as necessary, in a linear mixed model using the kinship matrix; additional models further adjusted for fasting TG were also performed. Meta-analysis of the discovery and replication studies (n = 1715) was performed on the top SNPs from GOLDN.

RESULTS

GOLDN revealed 111 suggestive (p < 1E-05) associations, with two SNPs meeting GWA significance level (p < 5E-08). Of the two significant SNPs, rs964184 demonstrated evidence of replication (p = 1.20E-03) in the HAPI Heart Study and in a joint analysis, was GWA significant (p = 1.26E-09). Rs964184 has been associated with fasting lipids (TG and HDL) and is near ZPR1 (formerly ZNF259), close to the APOA1/C3/A4/A5 cluster. This association was attenuated upon additional adjustment for fasting TG.

CONCLUSION

This is the first report of a genome-wide significant association with replication for a novel phenotype, namely PPL TG response. Future investigation into response phenotypes is warranted using pathway analyses, or newer genetic technologies such as metabolomics.

摘要

目的

甘油三酯(TG)对高脂餐的反应(餐后血脂异常,PPL)影响心血管疾病风险,且受基因和环境的影响。参与脂质代谢的基因在PPL TG反应的遗传研究中占据主导地位。我们试图通过脂质降低药物和饮食网络遗传学(GOLDN)中的全基因组关联(GWA)研究来阐明常见的基因变异。

方法

GOLDN GWAS发现样本由872名欧洲血统家族中的参与者组成。对2,543,887个变异的基因型进行测量或从HapMap中推算。在遗传与表型干预(HAPI)心脏研究(n = 843)中对我们的顶级结果进行重复验证。使用随机系数回归模型,根据高脂餐后基线(空腹,0小时)、3.5小时和6小时测量的血浆TG构建PPL TG反应表型。在使用亲属关系矩阵的线性混合模型中,必要时对协变量和主成分进行关联分析调整;还进行了进一步针对空腹TG进行调整的其他模型分析。对GOLDN中的顶级单核苷酸多态性(SNP)进行发现和重复研究(n = 1715)的荟萃分析。

结果

GOLDN揭示了111个提示性关联(p < 1E - 05),其中两个SNP达到GWA显著性水平(p < 5E - 08)。在这两个显著的SNP中,rs964184在HAPI心脏研究中显示出重复验证的证据(p = 1.20E - 03),在联合分析中具有GWA显著性(p = 1.26E - 09)。Rs964184与空腹血脂(TG和HDL)相关,且靠近ZPR1(原ZNF259),接近APOA1/C3/A4/A5簇。在进一步调整空腹TG后,这种关联减弱。

结论

这是首次针对一种新表型,即PPL TG反应,进行全基因组显著性关联并重复验证的报告。有必要使用通路分析或更新的遗传技术如代谢组学对反应表型进行未来研究。

相似文献

3
Fenofibrate effect on triglyceride and postprandial response of apolipoprotein A5 variants: the GOLDN study.
Arterioscler Thromb Vasc Biol. 2007 Jun;27(6):1417-25. doi: 10.1161/ATVBAHA.107.140103. Epub 2007 Apr 12.
4
Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge.
J Lipid Res. 2016 Dec;57(12):2200-2207. doi: 10.1194/jlr.M069948. Epub 2016 Oct 24.
5
Genome-Wide Association Study of the Postprandial Triglyceride Response Yields Common Genetic Variation in LIPC (Hepatic Lipase).
Circ Genom Precis Med. 2020 Aug;13(4):e002693. doi: 10.1161/CIRCGEN.119.002693. Epub 2020 Jun 30.
6
Variants identified in a GWAS meta-analysis for blood lipids are associated with the lipid response to fenofibrate.
PLoS One. 2012;7(10):e48663. doi: 10.1371/journal.pone.0048663. Epub 2012 Oct 31.
7
A genome-wide study of lipid response to fenofibrate in Caucasians: a combined analysis of the GOLDN and ACCORD studies.
Pharmacogenet Genomics. 2016 Jul;26(7):324-33. doi: 10.1097/FPC.0000000000000219.
8
Metabolic and inflammatory biomarkers are associated with epigenetic aging acceleration estimates in the GOLDN study.
Clin Epigenetics. 2018 Apr 18;10:56. doi: 10.1186/s13148-018-0481-4. eCollection 2018.
10
The genetic architecture of fasting plasma triglyceride response to fenofibrate treatment.
Eur J Hum Genet. 2008 May;16(5):603-13. doi: 10.1038/sj.ejhg.5202003. Epub 2008 Jan 23.

引用本文的文献

2
Interaction between genetic risk score and dietary fat intake on lipid-related traits in Brazilian young adults.
Br J Nutr. 2024 Sep 14;132(5):575-589. doi: 10.1017/S0007114524001594. Epub 2024 Sep 23.
5
Current Data and New Insights into the Genetic Factors of Atherogenic Dyslipidemia Associated with Metabolic Syndrome.
Diagnostics (Basel). 2023 Jul 12;13(14):2348. doi: 10.3390/diagnostics13142348.
6
Genetics of Cholesterol-Related Genes in Metabolic Syndrome: A Review of Current Evidence.
Biomedicines. 2022 Dec 13;10(12):3239. doi: 10.3390/biomedicines10123239.
7
Research gaps and opportunities in precision nutrition: an NIH workshop report.
Am J Clin Nutr. 2022 Dec 19;116(6):1877-1900. doi: 10.1093/ajcn/nqac237.
8
Appraisal of Gene-Environment Interactions in GWAS for Evidence-Based Precision Nutrition Implementation.
Curr Nutr Rep. 2022 Dec;11(4):563-573. doi: 10.1007/s13668-022-00430-3. Epub 2022 Aug 11.

本文引用的文献

1
Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease.
J Am Coll Cardiol. 2014 Dec 16;64(23):2525-40. doi: 10.1016/j.jacc.2014.09.042.
2
CardioGxE, a catalog of gene-environment interactions for cardiometabolic traits.
BioData Min. 2014 Oct 26;7:21. doi: 10.1186/1756-0381-7-21. eCollection 2014.
3
Triglycerides and cardiovascular disease.
Lancet. 2014 Aug 16;384(9943):626-635. doi: 10.1016/S0140-6736(14)61177-6.
6
The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management.
Lancet Diabetes Endocrinol. 2014 Aug;2(8):655-66. doi: 10.1016/S2213-8587(13)70191-8. Epub 2013 Dec 23.
7
Postprandial lipemia as a cardiometabolic risk factor.
Curr Med Res Opin. 2014 Aug;30(8):1489-503. doi: 10.1185/03007995.2014.909394. Epub 2014 May 2.
8
Postprandial hypertriglyceridemia as a coronary risk factor.
Clin Chim Acta. 2014 Apr 20;431:131-42. doi: 10.1016/j.cca.2014.01.015. Epub 2014 Feb 6.
10
Lipid metabolism after an oral fat test meal is affected by age-associated features of metabolic syndrome, but not by age.
Atherosclerosis. 2013 Jan;226(1):258-62. doi: 10.1016/j.atherosclerosis.2012.10.052. Epub 2012 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验