Suppr超能文献

细胞核分级分离揭示了数千种与活跃基因相邻的染色质结合非编码RNA。

Nuclear Fractionation Reveals Thousands of Chromatin-Tethered Noncoding RNAs Adjacent to Active Genes.

作者信息

Werner Michael S, Ruthenburg Alexander J

机构信息

Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.

Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.

出版信息

Cell Rep. 2015 Aug 18;12(7):1089-98. doi: 10.1016/j.celrep.2015.07.033. Epub 2015 Aug 6.

Abstract

A number of long noncoding RNAs (lncRNAs) have been reported to regulate transcription via recruitment of chromatin modifiers or bridging distal enhancer elements to gene promoters. However, the generality of these modes of regulation and the mechanisms of chromatin attachment for thousands of unstudied human lncRNAs remain unclear. To address these questions, we performed stringent nuclear fractionation coupled to RNA sequencing. We provide genome-wide identification of human chromatin-associated lncRNAs and demonstrate tethering of RNA to chromatin by RNAPII is a pervasive mechanism of attachment. We also uncovered thousands of chromatin-enriched RNAs (cheRNAs) that share molecular properties with known lncRNAs. Although distinct from eRNAs derived from active prototypical enhancers, the production of cheRNAs is strongly correlated with the expression of neighboring protein-coding genes. This work provides an updated framework for nuclear RNA organization that includes a large chromatin-associated transcript population correlated with active genes and may prove useful in de novo enhancer annotation.

摘要

据报道,许多长链非编码RNA(lncRNA)通过招募染色质修饰因子或将远端增强子元件桥接到基因启动子来调节转录。然而,这些调节模式的普遍性以及数千种未研究的人类lncRNA的染色质附着机制仍不清楚。为了解决这些问题,我们进行了严格的细胞核分级分离并结合RNA测序。我们提供了全基因组范围内人类染色质相关lncRNA的鉴定,并证明RNA通过RNA聚合酶II与染色质的连接是一种普遍的附着机制。我们还发现了数千种与已知lncRNA具有共同分子特性的染色质富集RNA(cheRNA)。尽管与源自活性典型增强子的eRNA不同,但cheRNA的产生与邻近蛋白质编码基因的表达密切相关。这项工作为核RNA组织提供了一个更新的框架,其中包括与活性基因相关的大量染色质相关转录本群体,可能对从头增强子注释有用。

相似文献

1
Nuclear Fractionation Reveals Thousands of Chromatin-Tethered Noncoding RNAs Adjacent to Active Genes.
Cell Rep. 2015 Aug 18;12(7):1089-98. doi: 10.1016/j.celrep.2015.07.033. Epub 2015 Aug 6.
2
Long noncoding RNAs: an emerging link between gene regulation and nuclear organization.
Trends Cell Biol. 2014 Nov;24(11):651-63. doi: 10.1016/j.tcb.2014.08.009. Epub 2014 Oct 23.
3
Chromatin-enriched RNAs mark active and repressive cis-regulation: An analysis of nuclear RNA-seq.
PLoS Comput Biol. 2020 Feb 10;16(2):e1007119. doi: 10.1371/journal.pcbi.1007119. eCollection 2020 Feb.
4
The Properties of Long Noncoding RNAs That Regulate Chromatin.
Annu Rev Genomics Hum Genet. 2016 Aug 31;17:69-94. doi: 10.1146/annurev-genom-090314-024939. Epub 2016 Apr 21.
5
Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers.
Cold Spring Harb Perspect Biol. 2015 Jan 5;7(1):a018622. doi: 10.1101/cshperspect.a018622.
7
Annotation of nuclear lncRNAs based on chromatin interactions.
PLoS One. 2024 May 6;19(5):e0295971. doi: 10.1371/journal.pone.0295971. eCollection 2024.
8
Integrator mediates the biogenesis of enhancer RNAs.
Nature. 2015 Sep 17;525(7569):399-403. doi: 10.1038/nature14906. Epub 2015 Aug 26.
9
Long noncoding RNAs as Organizers of Nuclear Architecture.
Sci China Life Sci. 2016 Mar;59(3):236-44. doi: 10.1007/s11427-016-5012-y. Epub 2016 Jan 29.
10
Mechanisms of Long Noncoding RNA Nuclear Retention.
Trends Biochem Sci. 2020 Nov;45(11):947-960. doi: 10.1016/j.tibs.2020.07.001. Epub 2020 Aug 13.

引用本文的文献

2
Long Non-Coding RNAs and RNA-Binding Proteins in Pancreatic Cancer Development and Progression.
Cancers (Basel). 2025 May 8;17(10):1601. doi: 10.3390/cancers17101601.
4
Role of long noncoding RNAs in diabetes-associated peripheral arterial disease.
Cardiovasc Diabetol. 2024 Jul 24;23(1):274. doi: 10.1186/s12933-024-02327-7.
6
Porcine cis-acting lnc-CAST positively regulates CXCL8 expression through histone H3K27ac.
Vet Res. 2024 May 7;55(1):56. doi: 10.1186/s13567-024-01296-9.
7
Transcription factors ERα and Sox2 have differing multiphasic DNA and RNA binding mechanisms.
bioRxiv. 2024 Mar 19:2024.03.18.585577. doi: 10.1101/2024.03.18.585577.
10
Merging short and stranded long reads improves transcript assembly.
PLoS Comput Biol. 2023 Oct 26;19(10):e1011576. doi: 10.1371/journal.pcbi.1011576. eCollection 2023 Oct.

本文引用的文献

1
A unified architecture of transcriptional regulatory elements.
Trends Genet. 2015 Aug;31(8):426-33. doi: 10.1016/j.tig.2015.05.007. Epub 2015 Jun 11.
2
Calibrating ChIP-Seq with Nucleosomal Internal Standards to Measure Histone Modification Density Genome Wide.
Mol Cell. 2015 Jun 4;58(5):886-99. doi: 10.1016/j.molcel.2015.04.022. Epub 2015 May 21.
3
The landscape of long noncoding RNAs in the human transcriptome.
Nat Genet. 2015 Mar;47(3):199-208. doi: 10.1038/ng.3192. Epub 2015 Jan 19.
4
Long noncoding RNAs: an emerging link between gene regulation and nuclear organization.
Trends Cell Biol. 2014 Nov;24(11):651-63. doi: 10.1016/j.tcb.2014.08.009. Epub 2014 Oct 23.
5
6
Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide.
Mol Cell. 2014 Aug 7;55(3):347-60. doi: 10.1016/j.molcel.2014.06.005. Epub 2014 Jul 3.
7
Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification.
Nat Biotechnol. 2014 Sep;32(9):933-940. doi: 10.1038/nbt.2943. Epub 2014 Jul 6.
8
Enhancer RNAs and regulated transcriptional programs.
Trends Biochem Sci. 2014 Apr;39(4):170-82. doi: 10.1016/j.tibs.2014.02.007. Epub 2014 Mar 24.
9
An atlas of active enhancers across human cell types and tissues.
Nature. 2014 Mar 27;507(7493):455-461. doi: 10.1038/nature12787.
10
Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase.
Mol Cell. 2014 Mar 6;53(5):819-30. doi: 10.1016/j.molcel.2014.02.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验