Celik Selvi, Hyrefelt Ludvig, Czuba Tomasz, Li Yuan, Assis Juliana, Martinez Julia, Johansson Markus, André Oscar, Synnergren Jane, Sandstedt Joakim, Nordenfelt Pontus, Vukusic Kristina, Smith J Gustav, Gidlöf Olof
Division of Cardiology, Department of Clinical Sciences, Lund University, BMC D12, Solvegatan 19, Lund SE-221 84, Sweden.
Wallenberg Centre for Molecular Medicine and Lund University Diabetes Centre, Lund University, Lund, Sweden.
Cardiovasc Res. 2025 May 6;121(4):629-642. doi: 10.1093/cvr/cvaf037.
Alternative splicing of Titin (TTN) I-band exons produce protein isoforms with variable size and elasticity, but the mechanisms whereby TTN splice factors regulate exon usage and thereby determining cardiomyocyte passive stiffness and diastolic function, is not well understood. Non-coding RNA transcripts from the antisense strand of protein-coding genes have been shown to regulate alternative splicing of the sense gene. The TTN gene locus harbours >80 natural antisense transcripts (NATs) with unknown function in the human heart. The aim of this study was to determine if TTN antisense transcripts play a role in alternative splicing of TTN.
RNA-sequencing and RNA in situ hybridization (ISH) of cardiac tissue from heart failure (HF) patients, unused donor hearts, and human iPS-derived cardiomyocytes (iPS-CMs) were used to determine the expression and localization of TTN NATs. Live cell imaging was used to analyse the effect of NATs on sarcomere properties. RNA ISH and immunofluorescence was performed in iPS-CMs to study the interaction between NATs, TTN mRNA, and splice factor protein RBM20. We found that TTN-AS1-276 was the predominant TTN NAT in the human heart and that it was up-regulated in HF. Knockdown of TTN-AS1-276 in human iPS-CMs resulted in decreased interaction between RBM20 and TTN pre-mRNA, decreased TTN I-band exon skipping, and markedly lower expression of the less compliant TTN isoform N2B. The effect on TTN exon usage was independent of sense-antisense exon overlap and polymerase II elongation rate. Furthermore, knockdown resulted in longer sarcomeres with preserved alignment, improved fractional shortening, and relaxation times.
We demonstrate a role for TTN-AS1-276 in facilitating alternative splicing of TTN and regulating sarcomere properties. This transcript could constitute a target for improving cardiac passive stiffness and diastolic function in conditions such as heart failure with preserved ejection fraction.
肌联蛋白(TTN)I带外显子的可变剪接产生大小和弹性各异的蛋白质异构体,但TTN剪接因子调节外显子使用从而决定心肌细胞被动僵硬度和舒张功能的机制尚不清楚。已表明来自蛋白质编码基因反义链的非编码RNA转录本可调节正义基因的可变剪接。TTN基因座在人类心脏中含有80多种功能未知的天然反义转录本(NAT)。本研究的目的是确定TTN反义转录本是否在TTN的可变剪接中发挥作用。
利用心力衰竭(HF)患者、未使用的供体心脏和人诱导多能干细胞衍生的心肌细胞(iPS-CM)的心脏组织进行RNA测序和RNA原位杂交(ISH),以确定TTN NAT的表达和定位。采用活细胞成像分析NAT对肌节特性的影响。在iPS-CM中进行RNA ISH和免疫荧光,以研究NAT、TTN mRNA和剪接因子蛋白RBM20之间的相互作用。我们发现TTN-AS1-276是人类心脏中主要的TTN NAT,且在HF中上调。在人iPS-CM中敲低TTN-AS1-276导致RBM20与TTN前体mRNA之间的相互作用减少、TTN I带外显子跳跃减少,以及顺应性较低的TTN异构体N2B的表达显著降低。对TTN外显子使用的影响独立于正义-反义外显子重叠和聚合酶II延伸率。此外,敲低导致肌节更长且排列保留、分数缩短率和舒张时间改善。
我们证明了TTN-AS1-276在促进TTN可变剪接和调节肌节特性方面的作用。该转录本可能成为改善射血分数保留的心力衰竭等疾病中心脏被动僵硬度和舒张功能的靶点。