Suppr超能文献

扩散磁共振成像中的吉布斯振铃效应

Gibbs ringing in diffusion MRI.

作者信息

Veraart Jelle, Fieremans Els, Jelescu Ileana O, Knoll Florian, Novikov Dmitry S

机构信息

Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, USA.

Department of Physics, iMinds-Vision Lab, University of Antwerp, Antwerp, Belgium.

出版信息

Magn Reson Med. 2016 Jul;76(1):301-14. doi: 10.1002/mrm.25866. Epub 2015 Aug 10.

Abstract

PURPOSE

To study and reduce the effect of Gibbs ringing artifact on computed diffusion parameters.

METHODS

We reduce the ringing by extrapolating the k-space of each diffusion weighted image beyond the measured part by selecting an adequate regularization term. We evaluate several regularization terms and tune the regularization parameter to find the best compromise between anatomical accuracy of the reconstructed image and suppression of the Gibbs artifact.

RESULTS

We demonstrate empirically and analytically that the Gibbs artifact, which is typically observed near sharp edges in magnetic resonance images, has a significant impact on the quantification of diffusion model parameters, even for infinitesimal diffusion weighting. We find the second order total generalized variation to be a good choice for the penalty term to regularize the extrapolation of the k-space, as it provides a parsimonious representation of images, a practically full suppression of Gibbs ringing, and the absence of staircasing artifacts typical for total variation methods.

CONCLUSIONS

Regularized extrapolation of the k-space data significantly reduces truncation artifacts without compromising spatial resolution in comparison to the default option of window filtering. In particular, accuracy of estimating diffusion tensor imaging and diffusion kurtosis imaging parameters improves so much that unconstrained fits become possible. Magn Reson Med 76:301-314, 2016. © 2015 Wiley Periodicals, Inc.

摘要

目的

研究并减少吉布斯振铃伪影对计算扩散参数的影响。

方法

通过选择合适的正则化项,将每个扩散加权图像的k空间外推到测量部分之外,从而减少振铃。我们评估了几种正则化项,并调整正则化参数,以在重建图像的解剖学准确性和吉布斯伪影抑制之间找到最佳折衷。

结果

我们通过实验和分析证明,吉布斯伪影通常在磁共振图像的锐利边缘附近观察到,即使对于极小的扩散加权,它也对扩散模型参数的量化有显著影响。我们发现二阶全广义变分是正则化k空间外推惩罚项的一个不错选择,因为它提供了图像的简洁表示,几乎完全抑制了吉布斯振铃,并且没有总变分方法典型的阶梯状伪影。

结论

与窗口滤波的默认选项相比,k空间数据的正则化外推显著减少了截断伪影,同时不影响空间分辨率。特别是,估计扩散张量成像和扩散峰度成像参数的准确性提高得如此之多,以至于无约束拟合成为可能。《磁共振医学》76:301 - 314, 2016。© 2015威利期刊公司。

相似文献

1
Gibbs ringing in diffusion MRI.扩散磁共振成像中的吉布斯振铃效应
Magn Reson Med. 2016 Jul;76(1):301-14. doi: 10.1002/mrm.25866. Epub 2015 Aug 10.
2
Gibbs-ringing artifact removal based on local subvoxel-shifts.基于局部亚体素移位的吉布斯振铃伪影去除
Magn Reson Med. 2016 Nov;76(5):1574-1581. doi: 10.1002/mrm.26054. Epub 2015 Nov 24.
4
Q-space truncation and sampling in diffusion spectrum imaging.扩散谱成像中的Q空间截断与采样
Magn Reson Med. 2016 Dec;76(6):1750-1763. doi: 10.1002/mrm.26071. Epub 2016 Jan 13.

引用本文的文献

本文引用的文献

3
A simple noise correction scheme for diffusional kurtosis imaging.一种用于扩散峰度成像的简单噪声校正方案。
Magn Reson Imaging. 2015 Jan;33(1):124-33. doi: 10.1016/j.mri.2014.08.028. Epub 2014 Aug 28.
10
Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging.弥散峰度成像中脑脊液抑制的效果。
J Magn Reson Imaging. 2013 Feb;37(2):365-71. doi: 10.1002/jmri.23840. Epub 2012 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验