Suppr超能文献

语言输入的性质会影响从自然语言学习过程中的大脑激活情况。

The nature of the language input affects brain activation during learning from a natural language.

作者信息

Plante Elena, Patterson Dianne, Gómez Rebecca, Almryde Kyle R, White Milo G, Asbjørnsen Arve E

机构信息

The University of Arizona Department of Speech, Language, & Hearing Sciences PO Box 210071, The University of Arizona, Tucson, AZ 85721-0071, USA.

University of Bergen Department of Biological and Medical Psychology University of Bergen Jonas Lies vei 91 5009 Bergen Norway.

出版信息

J Neurolinguistics. 2015 Nov 1;36:17-34. doi: 10.1016/j.jneuroling.2015.04.005.

Abstract

Artificial language studies have demonstrated that learners are able to segment individual word-like units from running speech using the transitional probability information. However, this skill has rarely been examined in the context of natural languages, where stimulus parameters can be quite different. In this study, two groups of English-speaking learners were exposed to Norwegian sentences over the course of three fMRI scans. One group was provided with input in which transitional probabilities predicted the presence of target words in the sentences. This group quickly learned to identify the target words and fMRI data revealed an extensive and highly dynamic learning network. These results were markedly different from activation seen for a second group of participants. This group was provided with highly similar input that was modified so that word learning based on syllable co-occurrences was not possible. These participants showed a much more restricted network. The results demonstrate that the nature of the input strongly influenced the nature of the network that learners employ to learn the properties of words in a natural language.

摘要

人工语言研究表明,学习者能够利用过渡概率信息从连续的语音中分割出单个类似单词的单元。然而,在自然语言环境中,这种技能很少被研究,因为自然语言中的刺激参数可能大不相同。在本研究中,两组说英语的学习者在三次功能磁共振成像扫描过程中接触挪威语句子。一组学习者所接收的输入中,过渡概率能够预测句子中目标单词的出现。这组学习者很快学会了识别目标单词,功能磁共振成像数据显示出一个广泛且高度动态的学习网络。这些结果与第二组参与者的激活情况明显不同。第二组参与者所接收的输入高度相似,但经过修改后无法基于音节共现来学习单词。这些参与者表现出的网络要受限得多。结果表明,输入的性质强烈影响学习者用于学习自然语言中单词属性的网络的性质。

相似文献

引用本文的文献

8
Learning Without Trying: The Clinical Relevance of Statistical Learning.潜移默化的学习:统计学习的临床意义
Lang Speech Hear Serv Sch. 2018 Aug 14;49(3S):710-722. doi: 10.1044/2018_LSHSS-STLT1-17-0131.

本文引用的文献

1
Language lateralization shifts with learning by adults.成年人通过学习会改变语言侧化。
Laterality. 2015 May;20(3):306-25. doi: 10.1080/1357650X.2014.963597. Epub 2014 Oct 6.
5
Attention is spontaneously biased toward regularities.注意会自动偏向规律。
Psychol Sci. 2013 May;24(5):667-77. doi: 10.1177/0956797612460407. Epub 2013 Apr 4.
8
Modelling with independent components.独立成分建模。
Neuroimage. 2012 Aug 15;62(2):891-901. doi: 10.1016/j.neuroimage.2012.02.020. Epub 2012 Feb 18.
10
The neurobiology of semantic memory.语义记忆的神经生物学。
Trends Cogn Sci. 2011 Nov;15(11):527-36. doi: 10.1016/j.tics.2011.10.001. Epub 2011 Oct 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验