Alonso-Montes Carmen, Diez Ibai, Remaki Lakhdar, Escudero Iñaki, Mateos Beatriz, Rosseel Yves, Marinazzo Daniele, Stramaglia Sebastiano, Cortes Jesus M
Basque Center for Applied Mathematics Bilbao, Spain.
Biocruces Health Research Institute, Cruces University Hospital Barakaldo, Spain.
Front Psychol. 2015 Jul 21;6:1024. doi: 10.3389/fpsyg.2015.01024. eCollection 2015.
Contemporary neuroimaging methods can shed light on the basis of human neural and cognitive specializations, with important implications for neuroscience and medicine. Indeed, different MRI acquisitions provide different brain networks at the macroscale; whilst diffusion-weighted MRI (dMRI) provides a structural connectivity (SC) coincident with the bundles of parallel fibers between brain areas, functional MRI (fMRI) accounts for the variations in the blood-oxygenation-level-dependent T2(*) signal, providing functional connectivity (FC). Understanding the precise relation between FC and SC, that is, between brain dynamics and structure, is still a challenge for neuroscience. To investigate this problem, we acquired data at rest and built the corresponding SC (with matrix elements corresponding to the fiber number between brain areas) to be compared with FC connectivity matrices obtained by three different methods: directed dependencies by an exploratory version of structural equation modeling (eSEM), linear correlations (C) and partial correlations (PC). We also considered the possibility of using lagged correlations in time series; in particular, we compared a lagged version of eSEM and Granger causality (GC). Our results were two-fold: firstly, eSEM performance in correlating with SC was comparable to those obtained from C and PC, but eSEM (not C, nor PC) provides information about directionality of the functional interactions. Second, interactions on a time scale much smaller than the sampling time, captured by instantaneous connectivity methods, are much more related to SC than slow directed influences captured by the lagged analysis. Indeed the performance in correlating with SC was much worse for GC and for the lagged version of eSEM. We expect these results to supply further insights to the interplay between SC and functional patterns, an important issue in the study of brain physiology and function.
当代神经成像方法能够揭示人类神经和认知特化的基础,这对神经科学和医学具有重要意义。的确,不同的磁共振成像(MRI)采集方法在宏观尺度上提供不同的脑网络;扩散加权磁共振成像(dMRI)提供与脑区之间平行纤维束一致的结构连接性(SC),而功能磁共振成像(fMRI)则考虑了血氧水平依赖的T2(*)信号变化,提供功能连接性(FC)。理解FC与SC之间的精确关系,即脑动力学与结构之间的关系,仍然是神经科学面临的一项挑战。为了研究这个问题,我们采集了静息状态下的数据,并构建了相应的SC(其矩阵元素对应于脑区之间的纤维数量),以便与通过三种不同方法获得的FC连接矩阵进行比较:探索性结构方程模型(eSEM)的直接依赖性、线性相关性(C)和偏相关性(PC)。我们还考虑了在时间序列中使用滞后相关性的可能性;特别是,我们比较了eSEM的滞后版本和格兰杰因果关系(GC)。我们的结果有两方面:首先,eSEM与SC的相关性表现与C和PC相当,但eSEM(而非C或PC)提供了功能相互作用方向性的信息。其次,由瞬时连接方法捕捉到的、时间尺度远小于采样时间的相互作用,与SC的相关性比滞后分析捕捉到的缓慢直接影响更强。事实上,GC和eSEM的滞后版本与SC的相关性表现要差得多。我们期望这些结果能为SC与功能模式之间的相互作用提供进一步的见解,这是脑生理学和功能研究中的一个重要问题。