Erdoğan Sinem B, Tong Yunjie, Hocke Lia M, Lindsey Kimberly P, deB Frederick Blaise
McLean Imaging Center, McLean HospitalBelmont, MA, USA; Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA.
Department of Radiology, University of Calgary Calgary, AB, Canada.
Front Hum Neurosci. 2016 Jun 28;10:311. doi: 10.3389/fnhum.2016.00311. eCollection 2016.
Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.
静息态功能连接分析是一种广泛用于描绘大脑内在功能组织的方法。全局信号回归(GSR)通常用于从静息态血氧水平依赖性功能磁共振成像(BOLD-fMRI)数据中去除系统性全局方差;然而,最近的研究表明,GSR可能会在功能网络内部和之间引入虚假的负相关,这使得一些网络之间报道的反相关的意义受到质疑。在本研究中,我们提出静息态fMRI的全局信号主要由系统性低频振荡(sLFOs)组成,这些振荡随着脑血液循环在全脑传播。我们为静息态fMRI数据引入了一种新的系统性噪声去除策略,即“动态全局信号回归”(dGSR),它在从体素时间序列进行回归之前,对全局信号应用体素特异性的最佳时间延迟。我们在两个被认为内在组织成反相关网络的功能系统上检验我们的假设:默认模式网络(DMN)和任务积极网络(TPN)。我们评估dGSR的功效,并在以下方面将其性能与传统的“静态”全局回归(sGSR)方法进行比较:(i)解释数据中的系统性方差;(ii)提高功能连接测量的特异性和敏感性。相对于sGSR,dGSR增加了被建模和去除的BOLD信号方差量,同时减少了sGSR在参考区域引入的虚假负相关,并减弱了夸大的正连接测量。我们得出结论,将sLFOs的时间延迟信息纳入全局噪声去除策略对于从静息态功能连接图中进行最佳噪声去除至关重要。