Suppr超能文献

基础和转化癌症研究中的大数据。

Big data in basic and translational cancer research.

机构信息

Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Nat Rev Cancer. 2022 Nov;22(11):625-639. doi: 10.1038/s41568-022-00502-0. Epub 2022 Sep 5.

Abstract

Historically, the primary focus of cancer research has been molecular and clinical studies of a few essential pathways and genes. Recent years have seen the rapid accumulation of large-scale cancer omics data catalysed by breakthroughs in high-throughput technologies. This fast data growth has given rise to an evolving concept of 'big data' in cancer, whose analysis demands large computational resources and can potentially bring novel insights into essential questions. Indeed, the combination of big data, bioinformatics and artificial intelligence has led to notable advances in our basic understanding of cancer biology and to translational advancements. Further advances will require a concerted effort among data scientists, clinicians, biologists and policymakers. Here, we review the current state of the art and future challenges for harnessing big data to advance cancer research and treatment.

摘要

从历史上看,癌症研究的主要重点是对少数几个基本途径和基因进行分子和临床研究。近年来,高通量技术的突破促成了大规模癌症组学数据的快速积累。这种快速的数据增长引发了癌症“大数据”的概念不断发展,其分析需要大量的计算资源,并有可能为基本问题带来新的见解。事实上,大数据、生物信息学和人工智能的结合已经为我们对癌症生物学的基本理解和转化进展带来了显著的进步。进一步的进展将需要数据科学家、临床医生、生物学家和政策制定者之间的协同努力。在这里,我们回顾了利用大数据推进癌症研究和治疗的现状和未来挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a03/9443637/cf81636d101c/41568_2022_502_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验