Suppr超能文献

通过氧化镍包覆的硅光阳极实现稳定的太阳能驱动水氧化生成O₂(g)

Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes.

作者信息

Sun Ke, McDowell Matthew T, Nielander Adam C, Hu Shu, Shaner Matthew R, Yang Fan, Brunschwig Bruce S, Lewis Nathan S

机构信息

†Division of Chemistry and Chemical Engineering, ‡Joint Center for Artificial Photosynthesis, §Beckman Institute and Molecular Materials Research Center, and ∥Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125, United States.

出版信息

J Phys Chem Lett. 2015 Feb 19;6(4):592-8. doi: 10.1021/jz5026195. Epub 2015 Jan 29.

Abstract

Semiconductors with small band gaps (<2 eV) must be stabilized against corrosion or passivation in aqueous electrolytes before such materials can be used as photoelectrodes to directly produce fuels from sunlight. In addition, incorporation of electrocatalysts on the surface of photoelectrodes is required for efficient oxidation of H2O to O2(g) and reduction of H2O or H2O and CO2 to fuels. We report herein the stabilization of np(+)-Si(100) and n-Si(111) photoanodes for over 1200 h of continuous light-driven evolution of O2(g) in 1.0 M KOH(aq) by an earth-abundant, optically transparent, electrocatalytic, stable, conducting nickel oxide layer. Under simulated solar illumination and with optimized index-matching for proper antireflection, NiOx-coated np(+)-Si(100) photoanodes produced photocurrent-onset potentials of -180 ± 20 mV referenced to the equilibrium potential for evolution of O2(g), photocurrent densities of 29 ± 1.8 mA cm(-2) at the equilibrium potential for evolution of O2(g), and a solar-to-O2(g) conversion figure-of-merit of 2.1%.

摘要

在将带隙小(<2 eV)的半导体用作光电极以直接利用太阳光生产燃料之前,必须使其在水性电解质中稳定,防止腐蚀或钝化。此外,为了将H2O高效氧化为O2(g)以及将H2O或H2O与CO2还原为燃料,需要在光电极表面引入电催化剂。我们在此报告,通过富含地球元素、光学透明、电催化、稳定且导电的氧化镍层,np(+)-Si(100)和n-Si(111)光阳极在1.0 M KOH(aq)中实现了超过1200小时的连续光驱动O2(g)析出的稳定化。在模拟太阳光照下,并通过优化折射率匹配以实现适当的抗反射,涂覆NiOx的np(+)-Si(100)光阳极产生的光电流起始电位相对于O2(g)析出的平衡电位为-180±20 mV,在O2(g)析出的平衡电位下光电流密度为29±1.8 mA cm(-2),太阳能到O2(g)的转换品质因数为2.1%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验