Suppr超能文献

使用光学皮肤模型进行皮肤病变治疗激光效率的临床前评估。

Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy.

作者信息

Wróbel Maciej S, Jedrzejewska-Szczerska Malgorzata, Galla Stanislaw, Piechowski Leszek, Sawczak Miroslaw, Popov Alexey P, Bykov Alexander V, Tuchin Valery V, Cenian Adam

机构信息

Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, Gdansk 80-233, Poland.

Polish Academy of Sciences, The Szewalski Institute of Fluid-flow Machinery, Physical Aspects of Ecoenergy Department, Fiszera 14, Gdansk 80-952, Poland.

出版信息

J Biomed Opt. 2015 Aug;20(8):85003. doi: 10.1117/1.JBO.20.8.085003.

Abstract

Skin lesions are commonly treated using laser heating. However, the introduction of new devices into clinical practice requires evaluation of their performance. This study presents the application of optical phantoms for assessment of a newly developed 975-nm pulsed diode laser system for dermatological purposes. Such phantoms closely mimic the absorption and scattering of real human skin (although not precisely in relation to thermal conductivity and capacitance); thus, they can be used as substitutes for human skin for approximate evaluation of laser heating efficiency in an almost real environment. Thermographic imaging was applied to measure the spatial and temporal temperature distributions on the surface of laser-irradiated phantoms. The study yielded results of heating with regard to phantom thickness and absorption, as well as laser settings. The methodology developed can be used in practice for preclinical evaluations of laser treatment for dermatology.

摘要

皮肤损伤通常采用激光加热进行治疗。然而,将新设备引入临床实践需要对其性能进行评估。本研究介绍了光学体模在评估一种新开发的用于皮肤科的975纳米脉冲二极管激光系统中的应用。此类体模紧密模拟真实人体皮肤的吸收和散射特性(尽管在热导率和电容方面并非精确模拟);因此,它们可作为人体皮肤的替代品,用于在几乎真实的环境中近似评估激光加热效率。采用热成像技术测量激光照射体模表面的空间和时间温度分布。该研究得出了关于体模厚度、吸收以及激光设置的加热结果。所开发的方法可实际用于皮肤科激光治疗的临床前评估。

相似文献

1
Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy.
J Biomed Opt. 2015 Aug;20(8):85003. doi: 10.1117/1.JBO.20.8.085003.
2
3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.
Lasers Surg Med. 2016 Apr;48(4):392-9. doi: 10.1002/lsm.22469. Epub 2016 Jan 8.
3
Measurements of fundamental properties of homogeneous tissue phantoms.
J Biomed Opt. 2015 Apr;20(4):045004. doi: 10.1117/1.JBO.20.4.045004.
5
[Current status of laser therapy in dermatology].
Hautarzt. 1998 Sep;49(9):690-704. doi: 10.1007/s001050050811.
6
Deep subsurface cavities in skin utilizing mechanical optical clearing and femtosecond laser ablation.
Lasers Surg Med. 2013 Aug;45(6):383-90. doi: 10.1002/lsm.22150. Epub 2013 Jun 10.
7
The thermal impact of phototherapy with concurrent super-pulsed lasers and red and infrared LEDs on human skin.
Lasers Med Sci. 2015 Jul;30(5):1575-81. doi: 10.1007/s10103-015-1755-0. Epub 2015 May 19.
8
Recipes to make organic phantoms for diffusive optical spectroscopy.
Appl Opt. 2013 Apr 10;52(11):2494-502. doi: 10.1364/AO.52.002494.
10
The thermal effects of therapeutic lasers with 810 and 904 nm wavelengths on human skin.
Photomed Laser Surg. 2011 Mar;29(3):145-53. doi: 10.1089/pho.2010.2793. Epub 2011 Jan 10.

引用本文的文献

2
Medical Applications of Diode Lasers: Pulsed versus Continuous Wave (cw) Regime.
Micromachines (Basel). 2021 Jun 17;12(6):710. doi: 10.3390/mi12060710.
4
Discovering new 3D bioprinting applications: Analyzing the case of optical tissue phantoms.
Int J Bioprint. 2018 Dec 31;5(1):178. doi: 10.18063/IJB.v5i1.178. eCollection 2019.
7
Experimental results of full scattering profile from finger tissue-like phantom.
Biomed Opt Express. 2016 Oct 21;7(11):4695-4701. doi: 10.1364/BOE.7.004695. eCollection 2016 Nov 1.
8
Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering.
Biomed Opt Express. 2016 May 4;7(6):2088-94. doi: 10.1364/BOE.7.002088. eCollection 2016 Jun 1.

本文引用的文献

1
Measurements of fundamental properties of homogeneous tissue phantoms.
J Biomed Opt. 2015 Apr;20(4):045004. doi: 10.1117/1.JBO.20.4.045004.
2
The effect of using different regions of interest on local and mean skin temperature.
J Therm Biol. 2015 Apr-May;49-50:33-8. doi: 10.1016/j.jtherbio.2015.01.008. Epub 2015 Jan 31.
3
Optical properties of biological tissues: a review.
Phys Med Biol. 2013 Jun 7;58(11):R37-61. doi: 10.1088/0031-9155/58/11/R37. Epub 2013 May 10.
4
Determining the optical properties of turbid mediaby using the adding-doubling method.
Appl Opt. 1993 Feb 1;32(4):559-68. doi: 10.1364/AO.32.000559.
5
Final version of 2009 AJCC melanoma staging and classification.
J Clin Oncol. 2009 Dec 20;27(36):6199-206. doi: 10.1200/JCO.2009.23.4799. Epub 2009 Nov 16.
7
Thermal parametric imaging in the evaluation of skin burn depth.
IEEE Trans Biomed Eng. 2007 Feb;54(2):303-12. doi: 10.1109/TBME.2006.886607.
9
Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry.
J Biomed Opt. 2006 Jul-Aug;11(4):041102. doi: 10.1117/1.2335429.
10
Recent developments in modeling heat transfer in blood perfused tissues.
IEEE Trans Biomed Eng. 1994 Feb;41(2):97-107. doi: 10.1109/10.284920.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验