Suppr超能文献

利用Cas9和向导RNA在玉米中进行靶向诱变、精确基因编辑和位点特异性基因插入

Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA.

作者信息

Svitashev Sergei, Young Joshua K, Schwartz Christine, Gao Huirong, Falco S Carl, Cigan A Mark

机构信息

Trait Enabling Technologies, DuPont Pioneer, Johnston, Iowa 50131

Trait Enabling Technologies, DuPont Pioneer, Johnston, Iowa 50131.

出版信息

Plant Physiol. 2015 Oct;169(2):931-45. doi: 10.1104/pp.15.00793. Epub 2015 Aug 12.

Abstract

Targeted mutagenesis, editing of endogenous maize (Zea mays) genes, and site-specific insertion of a trait gene using clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)-guide RNA technology are reported in maize. DNA vectors expressing maize codon-optimized Streptococcus pyogenes Cas9 endonuclease and single guide RNAs were cointroduced with or without DNA repair templates into maize immature embryos by biolistic transformation targeting five different genomic regions: upstream of the liguleless1 (LIG1) gene, male fertility genes (Ms26 and Ms45), and acetolactate synthase (ALS) genes (ALS1 and ALS2). Mutations were subsequently identified at all sites targeted, and plants containing biallelic multiplex mutations at LIG1, Ms26, and Ms45 were recovered. Biolistic delivery of guide RNAs (as RNA molecules) directly into immature embryo cells containing preintegrated Cas9 also resulted in targeted mutations. Editing the ALS2 gene using either single-stranded oligonucleotides or double-stranded DNA vectors as repair templates yielded chlorsulfuron-resistant plants. Double-strand breaks generated by RNA-guided Cas9 endonuclease also stimulated insertion of a trait gene at a site near LIG1 by homology-directed repair. Progeny showed expected Mendelian segregation of mutations, edits, and targeted gene insertions. The examples reported in this study demonstrate the utility of Cas9-guide RNA technology as a plant genome editing tool to enhance plant breeding and crop research needed to meet growing agriculture demands of the future.

摘要

在玉米中报道了使用成簇规律间隔短回文重复序列(CRISPR)相关(Cas)引导RNA技术进行靶向诱变、编辑玉米(Zea mays)内源基因以及性状基因的位点特异性插入。通过生物弹道转化将表达玉米密码子优化的化脓性链球菌Cas9核酸内切酶和单向导RNA的DNA载体与或不与DNA修复模板一起导入玉米未成熟胚,靶向五个不同的基因组区域:无叶舌1(LIG1)基因上游、雄性育性基因(Ms26和Ms45)以及乙酰乳酸合酶(ALS)基因(ALS1和ALS2)。随后在所有靶向位点鉴定到了突变,并获得了在LIG1、Ms26和Ms45处含有双等位基因多重突变的植株。将引导RNA(作为RNA分子)直接生物弹道递送至含有预整合Cas9的未成熟胚细胞也导致了靶向突变。使用单链寡核苷酸或双链DNA载体作为修复模板编辑ALS2基因产生了抗氯磺隆的植株。RNA引导的Cas9核酸内切酶产生的双链断裂也通过同源定向修复刺激了性状基因在LIG1附近位点的插入。后代显示出突变、编辑和靶向基因插入的预期孟德尔分离。本研究报道的实例证明了Cas9引导RNA技术作为一种植物基因组编辑工具在加强植物育种和满足未来不断增长的农业需求所需的作物研究方面的实用性。

相似文献

1
Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA.
Plant Physiol. 2015 Oct;169(2):931-45. doi: 10.1104/pp.15.00793. Epub 2015 Aug 12.
2
An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize.
Plant Biotechnol J. 2017 Feb;15(2):257-268. doi: 10.1111/pbi.12611. Epub 2016 Sep 5.
3
An Agrobacterium-Mediated CRISPR/Cas9 Platform for Genome Editing in Maize.
Methods Mol Biol. 2019;1917:121-143. doi: 10.1007/978-1-4939-8991-1_10.
6
Cas9-Guide RNA Directed Genome Editing in Soybean.
Plant Physiol. 2015 Oct;169(2):960-70. doi: 10.1104/pp.15.00783. Epub 2015 Aug 20.
7
CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation.
Plant Biotechnol J. 2018 Apr;16(4):844-855. doi: 10.1111/pbi.12832. Epub 2017 Nov 10.
8
Genome Editing in Potato with CRISPR/Cas9.
Methods Mol Biol. 2019;1917:183-201. doi: 10.1007/978-1-4939-8991-1_14.
9
CRISPR-Cas9-mediated 75.5-Mb inversion in maize.
Nat Plants. 2020 Dec;6(12):1427-1431. doi: 10.1038/s41477-020-00817-6. Epub 2020 Dec 7.
10
CRISPR/Cas9-mediated targeted T-DNA integration in rice.
Plant Mol Biol. 2019 Mar;99(4-5):317-328. doi: 10.1007/s11103-018-00819-1. Epub 2019 Jan 15.

引用本文的文献

2
Enhanced pigment production from plants and microbes: a genome editing approach.
3 Biotech. 2025 May;15(5):129. doi: 10.1007/s13205-025-04290-w. Epub 2025 Apr 16.
3
A Truncated Endogenous U6 Promoter Enables High-Efficiency CRISPR Editing in Flax ( L.).
Plants (Basel). 2025 Apr 6;14(7):1142. doi: 10.3390/plants14071142.
4
A Protocol for High-efficiency Transformation and Genome Editing in Elite Wheat Cultivars.
Methods Mol Biol. 2025;2898:307-320. doi: 10.1007/978-1-0716-4378-5_20.
5
Computationally derived RNA polymerase III promoters enable maize genome editing.
Front Plant Sci. 2025 Mar 19;16:1540425. doi: 10.3389/fpls.2025.1540425. eCollection 2025.
6
Beyond a few bases: methods for large DNA insertion and gene targeting in plants.
Plant J. 2025 Mar;121(6):e70099. doi: 10.1111/tpj.70099.
7
Harnessing promoter elements to enhance gene editing in plants: perspectives and advances.
Plant Biotechnol J. 2025 May;23(5):1375-1395. doi: 10.1111/pbi.14533. Epub 2025 Feb 27.
8
Antagonistic kinesin-14s within a single chromosomal drive haplotype.
bioRxiv. 2025 Feb 7:2025.02.05.636711. doi: 10.1101/2025.02.05.636711.
9
Advancements in genome editing tools for genetic studies and crop improvement.
Front Plant Sci. 2025 Feb 3;15:1370675. doi: 10.3389/fpls.2024.1370675. eCollection 2024.

本文引用的文献

1
DNA-binding Specificity Is a Major Determinant of the Activity and Toxicity of Zinc-finger Nucleases.
Mol Ther. 2008 Feb;16(2):352-358. doi: 10.1038/sj.mt.6300357. Epub 2016 Dec 7.
2
Optimized -mediated sorghum transformation protocol and molecular data of transgenic sorghum plants.
In Vitro Cell Dev Biol Plant. 2014;50(1):9-18. doi: 10.1007/s11627-013-9583-z. Epub 2013 Dec 13.
3
Targeted genome modifications in soybean with CRISPR/Cas9.
BMC Biotechnol. 2015 Mar 12;15:16. doi: 10.1186/s12896-015-0131-2.
5
Genome editing. The new frontier of genome engineering with CRISPR-Cas9.
Science. 2014 Nov 28;346(6213):1258096. doi: 10.1126/science.1258096.
6
The CRISPR-Cas system for plant genome editing: advances and opportunities.
J Exp Bot. 2015 Jan;66(1):47-57. doi: 10.1093/jxb/eru429. Epub 2014 Nov 4.
7
Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo.
Nat Biotechnol. 2015 Jan;33(1):73-80. doi: 10.1038/nbt.3081. Epub 2014 Oct 30.
8
CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum.
Plant Mol Biol. 2015 Jan;87(1-2):99-110. doi: 10.1007/s11103-014-0263-0. Epub 2014 Oct 26.
10
Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice.
Nucleic Acids Res. 2014;42(17):10903-14. doi: 10.1093/nar/gku806. Epub 2014 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验