Suppr超能文献

辅助镇痛药在社交媒体上用户生成帖子的分析:一项机器学习研究。

Analysis of User-Generated Posts on Social Media of Adjuvant Analgesics: A Machine Learning Study.

作者信息

Carabot Federico, Donat-Vargas Carolina, Lara-Abelenda Francisco J, Martínez Oscar Fraile-, Santoma Javier, Garcia-Montero Cielo, Valadés Teresa, Rojas Luis Gutierrez-, Martinez-González M A, Ortega Miguel Angel, Alvarez-Mon Melchor, Alvarez-Mon Miguel Angel

机构信息

Department of Medicine and Medical Specialities. University of Alcala, Alcala de Henares, 28801 Madrid, Spain.

Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain.

出版信息

Int J Med Sci. 2025 Jan 1;22(1):170-178. doi: 10.7150/ijms.96981. eCollection 2025.

Abstract

Antiepileptics and antidepressants are frequently prescribed for chronic pain, but their efficacy and potential adverse effects raise concerns, including dependency issues. Increased prescriptions, sometimes fraudulent, prompted reclassification of antiepileptics in some countries. Our aim is to comprehend opinions, perceptions, beliefs, and attitudes towards co-analgesics from online discussions on X (formerly known as Twitter), offering insights closer to reality than conventional surveys. In this cross-sectional study, we collected 77,183 public posts about co-analgesics in English or Spanish from January 1 2019 to December 31st, 2020. A total of 51,167 post were included, and 2,000 were manually analyzed using a researcher-created codebook. Machine learning classifiers were then applied to the remaining datasets to determine the number of publications for each user type and identify categories through content analysis. Of the 51,167 posts analyzed, 78% discussed anticonvulsants and 24% discussed analgesic antidepressants (Percentages add up to more than 100% because there were 1,300 posts containing references to both types of medications). Only 13% were authored by healthcare professionals, while 67% were from patients. Medical content predominated, with 70% noting low medication efficacy and almost 50% referencing side effects. Non-medical content included challenges in dispensing (25%), complaints about high costs (15%), and trivialization of medication use (10%). This study offers valuable insights into public perceptions of co-analgesics. Findings aid in designing public health communications to raise awareness of associated risks, urging both healthcare providers and the public to optimize drug use.

摘要

抗癫痫药和抗抑郁药常用于治疗慢性疼痛,但其疗效和潜在的不良反应引发了人们的担忧,包括药物依赖问题。在一些国家,抗癫痫药处方量的增加(有时存在欺诈行为)促使其重新分类。我们的目的是通过在X(前身为推特)上的在线讨论来了解人们对辅助镇痛药的看法、认知、信念和态度,从而提供比传统调查更贴近现实的见解。在这项横断面研究中,我们收集了2019年1月1日至2020年12月31日期间关于辅助镇痛药的77183条英文或西班牙文公开帖子。总共纳入了51167条帖子,并使用研究人员创建的编码手册对其中2000条进行了人工分析。然后将机器学习分类器应用于其余数据集,以确定每种用户类型的帖子数量,并通过内容分析确定类别。在分析的51167条帖子中,78%讨论了抗惊厥药,24%讨论了镇痛性抗抑郁药(百分比总和超过100%,因为有1300条帖子同时提及了这两种药物)。只有13%的帖子由医疗保健专业人员撰写,而67%来自患者。医疗内容占主导地位,70%的帖子指出药物疗效低,近50%提到了副作用。非医疗内容包括配药方面的挑战(25%)、对高成本的抱怨(15%)以及对药物使用的轻视(10%)。这项研究为公众对辅助镇痛药的认知提供了有价值的见解。研究结果有助于设计公共卫生宣传活动,以提高对相关风险的认识,促使医疗保健提供者和公众优化药物使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a92/11659822/d72c0a66f662/ijmsv22p0170g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验