Suppr超能文献

利用功能磁共振成像分析有效连接性。

Analyzing effective connectivity with functional magnetic resonance imaging.

作者信息

Stephan Klaas Enno, Friston Karl J

机构信息

Laboratory for Social and Neural Systems Research, Institute for Empirical Research in Economics, University of Zurich, 8006 Zurich, Switzerland.

Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK.

出版信息

Wiley Interdiscip Rev Cogn Sci. 2010 May;1(3):446-459. doi: 10.1002/wcs.58. Epub 2010 Apr 2.

Abstract

Functional neuroimaging techniques are used widely in cognitive neuroscience to investigate aspects of functional specialization and functional integration in the human brain. Functional integration can be characterized in two ways, functional connectivity and effective connectivity. While functional connectivity describes statistical dependencies between data, effective connectivity rests on a mechanistic model of the causal effects that generated the data. This review addresses the conceptual and methodological basis of established techniques for characterizing effective connectivity using functional magnetic resonance imaging (fMRI) data. In particular, we focus on dynamic causal modeling (DCM) of fMRI data and emphasize the importance of model selection procedures and nonlinear mechanisms for context-dependent changes in connection strengths. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.

摘要

功能神经成像技术在认知神经科学中被广泛应用,以研究人类大脑功能特化和功能整合的各个方面。功能整合可以通过两种方式来表征,即功能连接和有效连接。功能连接描述数据之间的统计依赖性,而有效连接则基于生成数据的因果效应的机制模型。本综述探讨了使用功能磁共振成像(fMRI)数据表征有效连接的既定技术的概念和方法基础。特别是,我们专注于fMRI数据的动态因果建模(DCM),并强调模型选择程序和非线性机制对于连接强度上下文相关变化的重要性。版权所有© 2010 John Wiley & Sons, Ltd。有关本文的更多资源,请访问WIREs网站。

相似文献

1
Analyzing effective connectivity with functional magnetic resonance imaging.
Wiley Interdiscip Rev Cogn Sci. 2010 May;1(3):446-459. doi: 10.1002/wcs.58. Epub 2010 Apr 2.
3
Dynamic Causal Modeling Self-Connectivity Findings in the Functional Magnetic Resonance Imaging Neuropsychiatric Literature.
Front Neurosci. 2021 Aug 11;15:636273. doi: 10.3389/fnins.2021.636273. eCollection 2021.
4
Model-based approaches to neuroimaging: combining reinforcement learning theory with fMRI data.
Wiley Interdiscip Rev Cogn Sci. 2010 Jul;1(4):501-510. doi: 10.1002/wcs.57. Epub 2010 Apr 2.
5
Regression DCM for fMRI.
Neuroimage. 2017 Jul 15;155:406-421. doi: 10.1016/j.neuroimage.2017.02.090. Epub 2017 Mar 1.
6
Construct validation of a DCM for resting state fMRI.
Neuroimage. 2015 Feb 1;106:1-14. doi: 10.1016/j.neuroimage.2014.11.027. Epub 2014 Nov 21.
7
Test-retest reliability of effective connectivity in the face perception network.
Hum Brain Mapp. 2016 Feb;37(2):730-44. doi: 10.1002/hbm.23061. Epub 2015 Nov 27.
8
A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease.
J Neurosci Methods. 2019 Apr 1;317:121-140. doi: 10.1016/j.jneumeth.2018.12.012. Epub 2018 Dec 26.
9
10
Spectral dynamic causal modeling: A didactic introduction and its relationship with functional connectivity.
Netw Neurosci. 2024 Apr 1;8(1):178-202. doi: 10.1162/netn_a_00348. eCollection 2024.

引用本文的文献

2
WhiFuN: A toolbox to map the white matter functional networks of the human brain.
Imaging Neurosci (Camb). 2025 May 30;3. doi: 10.1162/IMAG.a.3. eCollection 2025.
4
6
Hallmarks of Brain Plasticity.
Biomedicines. 2025 Feb 13;13(2):460. doi: 10.3390/biomedicines13020460.
8
Inter-network Effective Connectivity During An Emotional Working Memory Task in Two Independent Samples of Young Adults.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025 Jan 11. doi: 10.1016/j.bpsc.2025.01.006.
9
Comparison of whole-brain task-modulated functional connectivity methods for fMRI task connectomics.
bioRxiv. 2024 Oct 14:2024.01.22.576622. doi: 10.1101/2024.01.22.576622.
10
Comparison of whole-brain task-modulated functional connectivity methods for fMRI task connectomics.
Commun Biol. 2024 Oct 26;7(1):1402. doi: 10.1038/s42003-024-07088-3.

本文引用的文献

1
Dynamic Causal Models for phase coupling.
J Neurosci Methods. 2009 Sep 30;183(1):19-30. doi: 10.1016/j.jneumeth.2009.06.029. Epub 2009 Jul 2.
2
Tractography-based priors for dynamic causal models.
Neuroimage. 2009 Oct 1;47(4):1628-38. doi: 10.1016/j.neuroimage.2009.05.096. Epub 2009 Jun 10.
3
Bayesian model selection for group studies.
Neuroimage. 2009 Jul 15;46(4):1004-17. doi: 10.1016/j.neuroimage.2009.03.025. Epub 2009 Mar 20.
4
Forward and backward connections in the brain: a DCM study of functional asymmetries.
Neuroimage. 2009 Apr 1;45(2):453-62. doi: 10.1016/j.neuroimage.2008.12.041. Epub 2008 Dec 31.
5
Identifying neural drivers with functional MRI: an electrophysiological validation.
PLoS Biol. 2008 Dec 23;6(12):2683-97. doi: 10.1371/journal.pbio.0060315.
6
The cortical dynamics of intelligible speech.
J Neurosci. 2008 Dec 3;28(49):13209-15. doi: 10.1523/JNEUROSCI.2903-08.2008.
7
Dynamic causal models of steady-state responses.
Neuroimage. 2009 Feb 1;44(3):796-811. doi: 10.1016/j.neuroimage.2008.09.048. Epub 2008 Oct 17.
8
A dual role for prediction error in associative learning.
Cereb Cortex. 2009 May;19(5):1175-85. doi: 10.1093/cercor/bhn161. Epub 2008 Sep 26.
9
A neural representation of prior information during perceptual inference.
Neuron. 2008 Jul 31;59(2):336-47. doi: 10.1016/j.neuron.2008.05.021.
10
Nonlinear dynamic causal models for fMRI.
Neuroimage. 2008 Aug 15;42(2):649-62. doi: 10.1016/j.neuroimage.2008.04.262. Epub 2008 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验