Suppr超能文献

将人类社会决策分解为多个组成部分,然后再将它们重新组合起来。

Breaking human social decision making into multiple components and then putting them together again.

作者信息

Suzuki Shinsuke, O'Doherty John P

机构信息

Brain, Mind and Markets Laboratory, Department of Finance, Faculty of Business and Economics, The University of Melbourne, Parkville, Australia; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.

Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, USA; Computation and Neural Systems, California Institute of Technology, Pasadena, USA.

出版信息

Cortex. 2020 Jun;127:221-230. doi: 10.1016/j.cortex.2020.02.014. Epub 2020 Mar 9.

Abstract

Most of our waking time as human beings is spent interacting with other individuals. In order to make good decisions in this social milieu, it is often necessary to make inferences about the internal states, traits and intentions of others. Recently, some progress has been made toward uncovering the neural computations underlying human social decision-making by combining functional magnetic resonance neuroimaging (fMRI) with computational modeling of behavior. Modeling of behavioral data allows us to identify the key computations necessary for social decision-making and to determine how these computations are integrated. Furthermore, by correlating these variables against neuroimaging data, it has become possible to elucidate where in the brain various computations are implemented. Here we review the current state of knowledge in the domain of social computational neuroscience. Findings to date have emphasized that social decisions are driven by multiple computations conducted in parallel, and implemented in distinct brain regions. We suggest that further progress is going to depend on identifying how and where such variables get integrated in order to yield a coherent behavioral output.

摘要

作为人类,我们醒着的大部分时间都用于与他人互动。为了在这种社会环境中做出明智的决策,通常有必要对他人的内心状态、特质和意图进行推断。最近,通过将功能磁共振神经成像(fMRI)与行为计算模型相结合,在揭示人类社会决策背后的神经计算方面取得了一些进展。行为数据建模使我们能够识别社会决策所需的关键计算,并确定这些计算是如何整合的。此外,通过将这些变量与神经成像数据相关联,已经能够阐明大脑中各种计算在何处得以实现。在此,我们回顾社会计算神经科学领域的当前知识状态。迄今为止的研究结果强调,社会决策是由并行进行的多种计算驱动的,并在不同的脑区中得以实现。我们认为,进一步的进展将取决于确定这些变量如何以及在何处进行整合,以便产生连贯的行为输出。

相似文献

3
Computing Social Value Conversion in the Human Brain.计算人类大脑中的社会价值转换。
J Neurosci. 2019 Jun 26;39(26):5153-5172. doi: 10.1523/JNEUROSCI.3117-18.2019. Epub 2019 Apr 18.
4
Neural mechanisms of social learning and decision-making.社会学习和决策的神经机制。
Sci China Life Sci. 2021 Jun;64(6):897-910. doi: 10.1007/s11427-020-1833-8. Epub 2020 Nov 23.
10
The neurobiology of social decision-making.社会决策的神经生物学
Curr Opin Neurobiol. 2008 Apr;18(2):159-65. doi: 10.1016/j.conb.2008.06.003. Epub 2008 Aug 7.

引用本文的文献

1
Social inequity disrupts reward-based learning.社会不平等会扰乱基于奖励的学习。
Commun Psychol. 2025 Aug 16;3(1):125. doi: 10.1038/s44271-025-00300-y.
4
Inferences regarding oneself and others in the human brain.人类大脑中关于自身和他人的推断。
PLoS Biol. 2022 May 23;20(5):e3001662. doi: 10.1371/journal.pbio.3001662. eCollection 2022 May.

本文引用的文献

1
2
Computing Social Value Conversion in the Human Brain.计算人类大脑中的社会价值转换。
J Neurosci. 2019 Jun 26;39(26):5153-5172. doi: 10.1523/JNEUROSCI.3117-18.2019. Epub 2019 Apr 18.
3
Social learning through prediction error in the brain.大脑中通过预测误差进行的社会学习。
NPJ Sci Learn. 2017 Jun 16;2:8. doi: 10.1038/s41539-017-0009-2. eCollection 2017.
5
Computational neuroscience approaches to social cognition.计算神经科学方法在社会认知中的应用。
Curr Opin Psychol. 2018 Dec;24:92-97. doi: 10.1016/j.copsyc.2018.09.001. Epub 2018 Sep 11.
9
Neurocomputational approaches to social behavior.神经计算方法在社会行为中的应用。
Curr Opin Psychol. 2018 Dec;24:41-47. doi: 10.1016/j.copsyc.2018.04.009. Epub 2018 Apr 21.
10
Neural Mechanisms of Social Cognition in Primates.灵长类动物的社会认知神经机制。
Annu Rev Neurosci. 2018 Jul 8;41:99-118. doi: 10.1146/annurev-neuro-080317-061450. Epub 2018 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验