Suppr超能文献

通过整合X射线晶体学、实验性和理论红外光谱学,在原子层面解析小GTP酶催化GTP水解的过程。

Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of X-ray crystallography, experimental, and theoretical IR spectroscopy.

作者信息

Rudack Till, Jenrich Sarah, Brucker Sven, Vetter Ingrid R, Gerwert Klaus, Kötting Carsten

机构信息

From the Department of Biophysics, University of Bochum, Universitaetstrasse 150, 44780 Bochum, Germany.

the Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, and.

出版信息

J Biol Chem. 2015 Oct 2;290(40):24079-90. doi: 10.1074/jbc.M115.648071. Epub 2015 Aug 13.

Abstract

Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg(2+) coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg(2+) in GTPases. The Mg(2+) coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis.

摘要

小GTP酶调节细胞中的关键过程。其GTP酶反应因突变而出现功能异常与严重疾病有关。在此,我们比较了水解速度较慢的GTP酶Ran与Ras的GTP酶反应。通过结合时间分辨傅里叶变换红外差光谱和量子力学/分子力学模拟,我们阐明了磷酸基团与Mg(2+)的配位情况,尽管其在X射线结构中差异很大,但Ran和Ras的情况相同。一种分辨率提高的Ran·RanBD1复合物的新X射线结构证实了这一发现,并揭示了GTP酶中Mg(2+)精修的一个普遍问题。Mg(2+)配位并非Ran的GTP酶反应慢得多的原因。相反,Ran的Tyr-39侧链位于γ-磷酸基团和Gln-69之间,阻止了Gln-69相对于γ-磷酸基团对进攻水分子的最佳定位。这在RanY39A·RanBD1晶体结构中得到了证实。量子力学/分子力学模拟提供了催化中心的红外光谱,与实验光谱非常吻合。这两种方法的结合可以在原子细节上使光谱与结构相关联。例如,RasA18T和RanT25A突变体的傅里叶变换红外差光谱表明,光谱差异主要是由于Ran中Thr-25与α-磷酸基团的氢键所致。通过整合X射线结构分析、实验和理论红外光谱,X射线结构模型的催化中心进一步精修至亚埃分辨率,从而增进了对催化作用的理解。

相似文献

2
Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15295-300. doi: 10.1073/pnas.1204333109. Epub 2012 Sep 4.
5
Tyr39 of ran preserves the Ran.GTP gradient by inhibiting GTP hydrolysis.
J Mol Biol. 2010 Aug 6;401(1):1-6. doi: 10.1016/j.jmb.2010.05.068. Epub 2010 Jun 2.
6
The role of magnesium for geometry and charge in GTP hydrolysis, revealed by quantum mechanics/molecular mechanics simulations.
Biophys J. 2012 Jul 18;103(2):293-302. doi: 10.1016/j.bpj.2012.06.015. Epub 2012 Jul 17.
8
Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy.
Biophys J. 2017 Jan 10;112(1):66-77. doi: 10.1016/j.bpj.2016.11.3195.
10
Catalytic mechanism of a mammalian Rab·RabGAP complex in atomic detail.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21348-53. doi: 10.1073/pnas.1214431110. Epub 2012 Dec 12.

引用本文的文献

1
TOM1L1 mediated the sort of tumor suppressive miR-378a-3p into exosomes and the excretion out of cells to promote ESCC progression.
Cancer Gene Ther. 2025 May;32(5):507-520. doi: 10.1038/s41417-025-00889-6. Epub 2025 Mar 23.
3
Mechanism-Based Redesign of GAP to Activate Oncogenic Ras.
J Am Chem Soc. 2023 Sep 20;145(37):20302-20310. doi: 10.1021/jacs.3c04330. Epub 2023 Sep 8.
4
Alternative Approaches to Understand Microtubule Cap Morphology and Function.
ACS Omega. 2023 Jan 13;8(4):3540-3550. doi: 10.1021/acsomega.2c06926. eCollection 2023 Jan 31.
5
Small GTPase Ran: Depicting the nucleotide-specific conformational landscape of the functionally important C-terminus.
Front Mol Biosci. 2023 Jan 16;10:1111574. doi: 10.3389/fmolb.2023.1111574. eCollection 2023.
6
Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies.
Int J Mol Sci. 2021 Aug 26;22(17):9207. doi: 10.3390/ijms22179207.
7
Amino acid side chain contribution to protein FTIR spectra: impact on secondary structure evaluation.
Eur Biophys J. 2021 May;50(3-4):641-651. doi: 10.1007/s00249-021-01507-7. Epub 2021 Feb 8.
8
The protonation states of GTP and GppNHp in Ras proteins.
J Biol Chem. 2018 Mar 16;293(11):3871-3879. doi: 10.1074/jbc.RA117.001110. Epub 2018 Jan 30.
9
Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy.
Biophys J. 2017 Jan 10;112(1):66-77. doi: 10.1016/j.bpj.2016.11.3195.
10
Mechanism of the intrinsic arginine finger in heterotrimeric G proteins.
Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):E8041-E8050. doi: 10.1073/pnas.1612394113. Epub 2016 Nov 28.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Regulation of small GTPases by GEFs, GAPs, and GDIs.
Physiol Rev. 2013 Jan;93(1):269-309. doi: 10.1152/physrev.00003.2012.
3
Catalytic mechanism of a mammalian Rab·RabGAP complex in atomic detail.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21348-53. doi: 10.1073/pnas.1214431110. Epub 2012 Dec 12.
4
Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15295-300. doi: 10.1073/pnas.1204333109. Epub 2012 Sep 4.
5
The role of magnesium for geometry and charge in GTP hydrolysis, revealed by quantum mechanics/molecular mechanics simulations.
Biophys J. 2012 Jul 18;103(2):293-302. doi: 10.1016/j.bpj.2012.06.015. Epub 2012 Jul 17.
6
A comprehensive survey of Ras mutations in cancer.
Cancer Res. 2012 May 15;72(10):2457-67. doi: 10.1158/0008-5472.CAN-11-2612.
7
Inhibition and termination of physiological responses by GTPase activating proteins.
Physiol Rev. 2012 Jan;92(1):237-72. doi: 10.1152/physrev.00045.2010.
8
The specific vibrational modes of GTP in solution and bound to Ras: a detailed theoretical analysis by QM/MM simulations.
Phys Chem Chem Phys. 2011 Dec 28;13(48):21451-60. doi: 10.1039/c1cp22741f. Epub 2011 Nov 2.
9
Three ways in, one way out: water dynamics in the trans-membrane domains of the inner membrane translocase AcrB.
Proteins. 2011 Oct;79(10):2871-85. doi: 10.1002/prot.23122. Epub 2011 Aug 26.
10
Ras history: The saga continues.
Small GTPases. 2010 Jul;1(1):2-27. doi: 10.4161/sgtp.1.1.12178.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验