Rudack Till, Jenrich Sarah, Brucker Sven, Vetter Ingrid R, Gerwert Klaus, Kötting Carsten
From the Department of Biophysics, University of Bochum, Universitaetstrasse 150, 44780 Bochum, Germany.
the Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany, and.
J Biol Chem. 2015 Oct 2;290(40):24079-90. doi: 10.1074/jbc.M115.648071. Epub 2015 Aug 13.
Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg(2+) coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg(2+) in GTPases. The Mg(2+) coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis.
小GTP酶调节细胞中的关键过程。其GTP酶反应因突变而出现功能异常与严重疾病有关。在此,我们比较了水解速度较慢的GTP酶Ran与Ras的GTP酶反应。通过结合时间分辨傅里叶变换红外差光谱和量子力学/分子力学模拟,我们阐明了磷酸基团与Mg(2+)的配位情况,尽管其在X射线结构中差异很大,但Ran和Ras的情况相同。一种分辨率提高的Ran·RanBD1复合物的新X射线结构证实了这一发现,并揭示了GTP酶中Mg(2+)精修的一个普遍问题。Mg(2+)配位并非Ran的GTP酶反应慢得多的原因。相反,Ran的Tyr-39侧链位于γ-磷酸基团和Gln-69之间,阻止了Gln-69相对于γ-磷酸基团对进攻水分子的最佳定位。这在RanY39A·RanBD1晶体结构中得到了证实。量子力学/分子力学模拟提供了催化中心的红外光谱,与实验光谱非常吻合。这两种方法的结合可以在原子细节上使光谱与结构相关联。例如,RasA18T和RanT25A突变体的傅里叶变换红外差光谱表明,光谱差异主要是由于Ran中Thr-25与α-磷酸基团的氢键所致。通过整合X射线结构分析、实验和理论红外光谱,X射线结构模型的催化中心进一步精修至亚埃分辨率,从而增进了对催化作用的理解。