Suppr超能文献

Ras 蛋白中 GTP 和 GppNHp 的质子化状态。

The protonation states of GTP and GppNHp in Ras proteins.

机构信息

From the Department of Biophysics, Ruhr University Bochum, 44780 Bochum, Germany and.

From the Department of Biophysics, Ruhr University Bochum, 44780 Bochum, Germany and

出版信息

J Biol Chem. 2018 Mar 16;293(11):3871-3879. doi: 10.1074/jbc.RA117.001110. Epub 2018 Jan 30.

Abstract

The small GTPase Ras transmits signals in a variety of cellular signaling pathways, most prominently in cell proliferation. GTP hydrolysis in the active center of Ras acts as a prototype for many GTPases and is the key to the understanding of several diseases, including cancer. Therefore, Ras has been the focus of intense research over the last decades. A recent neutron diffraction crystal structure of Ras indicated a protonated γ-guanylyl imidodiphosphate (γ-GppNHp) group, which has put the protonation state of GTP in question. A possible protonation of GTP was not considered in previously published mechanistic studies. To determine the detailed prehydrolysis state of Ras, we calculated infrared and NMR spectra from quantum mechanics/molecular mechanics (QM/MM) simulations and compared them with those from previous studies. Furthermore, we measured infrared spectra of GTP and several GTP analogs bound to lipidated Ras on a membrane system under near-native conditions. Our findings unify results from previous studies and indicate a structural model confirming the hypothesis that γ-GTP is fully deprotonated in the prehydrolysis state of Ras.

摘要

小分子 GTP 酶 Ras 在多种细胞信号通路中传递信号,在细胞增殖中最为突出。Ras 活性中心的 GTP 水解作用是许多 GTP 酶的原型,也是理解包括癌症在内的几种疾病的关键。因此,Ras 一直是过去几十年研究的重点。最近一项关于 Ras 的中子衍射晶体结构表明存在一个质子化的γ-鸟苷酰基亚氨二磷酸(γ-GppNHp)基团,这使得 GTP 的质子化状态受到质疑。在以前发表的机制研究中,并没有考虑 GTP 的可能质子化。为了确定 Ras 的详细预水解状态,我们从量子力学/分子力学(QM/MM)模拟中计算了红外和 NMR 光谱,并将其与以前的研究进行了比较。此外,我们在接近天然条件的膜系统中测量了脂化 Ras 结合的 GTP 和几种 GTP 类似物的红外光谱。我们的研究结果统一了以前研究的结果,并提出了一个结构模型,证实了 γ-GTP 在 Ras 的预水解状态下完全去质子化的假设。

相似文献

1
The protonation states of GTP and GppNHp in Ras proteins.
J Biol Chem. 2018 Mar 16;293(11):3871-3879. doi: 10.1074/jbc.RA117.001110. Epub 2018 Jan 30.
2
Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15295-300. doi: 10.1073/pnas.1204333109. Epub 2012 Sep 4.
4
Neutron Crystal Structure of RAS GTPase Puts in Question the Protonation State of the GTP γ-Phosphate.
J Biol Chem. 2015 Dec 25;290(52):31025-36. doi: 10.1074/jbc.M115.679860. Epub 2015 Oct 29.
6
Crystal structure of M-Ras reveals a GTP-bound "off" state conformation of Ras family small GTPases.
J Biol Chem. 2005 Sep 2;280(35):31267-75. doi: 10.1074/jbc.M505503200. Epub 2005 Jun 30.
7
Structural basis for conformational dynamics of GTP-bound Ras protein.
J Biol Chem. 2010 Jul 16;285(29):22696-705. doi: 10.1074/jbc.M110.125161. Epub 2010 May 17.
8
gamma-phosphate protonation and pH-dependent unfolding of the Ras.GTP.Mg2+ complex: a vibrational spectroscopy study.
J Biol Chem. 2001 Mar 30;276(13):9931-5. doi: 10.1074/jbc.M009295200. Epub 2000 Dec 21.
9
The role of magnesium for geometry and charge in GTP hydrolysis, revealed by quantum mechanics/molecular mechanics simulations.
Biophys J. 2012 Jul 18;103(2):293-302. doi: 10.1016/j.bpj.2012.06.015. Epub 2012 Jul 17.

引用本文的文献

2
Far-reaching effects of tyrosine64 phosphorylation on Ras revealed with BeF complexes.
Commun Chem. 2024 Jan 31;7(1):19. doi: 10.1038/s42004-024-01105-6.
3
Mechanism-Based Redesign of GAP to Activate Oncogenic Ras.
J Am Chem Soc. 2023 Sep 20;145(37):20302-20310. doi: 10.1021/jacs.3c04330. Epub 2023 Sep 8.
5
Membrane-bound KRAS approximates an entropic ensemble of configurations.
Biophys J. 2021 Sep 21;120(18):4055-4066. doi: 10.1016/j.bpj.2021.08.008. Epub 2021 Aug 10.
6
Preferential DNA Polymerase β Reverse Reaction with Imidodiphosphate.
ACS Omega. 2020 Jun 19;5(25):15317-15324. doi: 10.1021/acsomega.0c01345. eCollection 2020 Jun 30.
7
Recent Advances in Understanding Biological GTP Hydrolysis through Molecular Simulation.
ACS Omega. 2020 Feb 28;5(9):4380-4385. doi: 10.1021/acsomega.0c00240. eCollection 2020 Mar 10.

本文引用的文献

1
Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy.
Biophys J. 2017 Jan 10;112(1):66-77. doi: 10.1016/j.bpj.2016.11.3195.
3
4
Ras Conformational Ensembles, Allostery, and Signaling.
Chem Rev. 2016 Jun 8;116(11):6607-65. doi: 10.1021/acs.chemrev.5b00542. Epub 2016 Jan 27.
5
Neutron Crystal Structure of RAS GTPase Puts in Question the Protonation State of the GTP γ-Phosphate.
J Biol Chem. 2015 Dec 25;290(52):31025-36. doi: 10.1074/jbc.M115.679860. Epub 2015 Oct 29.
7
Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD.
Structure. 2015 Mar 3;23(3):505-516. doi: 10.1016/j.str.2014.12.017. Epub 2015 Feb 12.
8
What vibrations tell us about GTPases.
Biol Chem. 2015 Feb;396(2):131-44. doi: 10.1515/hsz-2014-0219.
9
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics. 2013 Apr 1;29(7):845-54. doi: 10.1093/bioinformatics/btt055. Epub 2013 Feb 13.
10
N-Ras forms dimers at POPC membranes.
Biophys J. 2012 Oct 3;103(7):1585-93. doi: 10.1016/j.bpj.2012.08.043. Epub 2012 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验