Suppr超能文献

通过实验和理论红外光谱法阐明GTP酶中的单个氢键

Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy.

作者信息

Mann Daniel, Höweler Udo, Kötting Carsten, Gerwert Klaus

机构信息

Department of Biophysics, Ruhr University Bochum, Bochum, Germany.

Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Münster, Germany.

出版信息

Biophys J. 2017 Jan 10;112(1):66-77. doi: 10.1016/j.bpj.2016.11.3195.

Abstract

Time-resolved Fourier transform infrared (FTIR) spectroscopy is a powerful tool to elucidate label-free the reaction mechanisms of proteins. After assignment of the absorption bands to individual groups of the protein, the order of events during the reaction mechanism can be monitored and rate constants can be obtained. Additionally, structural information is encoded into infrared spectra and can be decoded by combining the experimental data with biomolecular simulations. We have determined recently the infrared vibrations of GTP and guanosine diphosphate (GDP) bound to Gα, a ubiquitous GTPase. These vibrations are highly sensitive for the environment of the phosphate groups and thereby for the binding mode the GTPase adopts to enable fast hydrolysis of GTP. In this study we calculated these infrared vibrations from biomolecular simulations to transfer the spectral information into a computational model that provides structural information far beyond crystal structure resolution. Conformational ensembles were generated using 15 snapshots of several 100 ns molecular-mechanics/molecular-dynamics (MM-MD) simulations, followed by quantum-mechanics/molecular-mechanics (QM/MM) minimization and normal mode analysis. In comparison with other approaches, no time-consuming QM/MM-MD simulation was necessary. We carefully benchmarked the simulation systems by deletion of single hydrogen bonds between the GTPase and GTP through several Gα point mutants. The missing hydrogen bonds lead to blue-shifts of the corresponding absorption bands. These band shifts for α-GTP (Gα-T48A), γ-GTP (Gα-R178S), and for both β-GTP/γ-GTP (Gα-K46A, Gα-D200E) were found in agreement in the experimental and the theoretical spectra. We applied our approach to open questions regarding Gα: we show that the GDP state of Gα carries a Mg, which is not found in x-ray structures. Further, the catalytic role of K46, a central residue of the P-loop, and the protonation state of the GTP are elucidated.

摘要

时间分辨傅里叶变换红外(FTIR)光谱是一种强大的工具,可用于无标记地阐明蛋白质的反应机制。在将吸收带分配给蛋白质的各个基团后,可以监测反应机制中事件的顺序,并获得速率常数。此外,结构信息被编码到红外光谱中,并且可以通过将实验数据与生物分子模拟相结合来解码。我们最近确定了与普遍存在的GTP酶Gα结合的GTP和二磷酸鸟苷(GDP)的红外振动。这些振动对磷酸基团的环境高度敏感,因此对GTP酶为实现GTP快速水解而采用的结合模式也高度敏感。在本研究中,我们通过生物分子模拟计算了这些红外振动,以将光谱信息转化为一个计算模型,该模型提供的结构信息远远超出晶体结构分辨率。使用几个100 ns分子力学/分子动力学(MM-MD)模拟的15个快照生成构象系综,随后进行量子力学/分子力学(QM/MM)最小化和正常模式分析。与其他方法相比,无需进行耗时的QM/MM-MD模拟。我们通过几个Gα点突变体删除GTP酶和GTP之间的单个氢键,仔细对模拟系统进行了基准测试。缺失的氢键导致相应吸收带的蓝移。在实验光谱和理论光谱中发现,α-GTP(Gα-T48A)、γ-GTP(Gα-R178S)以及β-GTP/γ-GTP(Gα-K46A、Gα-D200E)的这些带移一致。我们将我们的方法应用于有关Gα未解决的问题:我们表明Gα的GDP状态携带一个镁离子(Mg),这在X射线结构中未发现。此外,阐明了P环的中心残基K46的催化作用以及GTP的质子化状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f66/5232353/31524ebc2fd0/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验