Rotaru Amelia-Elena, Woodard Trevor L, Nevin Kelly P, Lovley Derek R
Department of Microbiology, University of Massachusetts Amherst, MA, USA ; Nordic Center for Earth Evolution, Department of Biology, University of Southern Denmark Odense, Denmark.
Department of Microbiology, University of Massachusetts Amherst, MA, USA.
Front Microbiol. 2015 Jul 21;6:744. doi: 10.3389/fmicb.2015.00744. eCollection 2015.
Electrodes are unnatural electron acceptors, and it is yet unknown how some Geobacter species evolved to use electrodes as terminal electron acceptors. Analysis of different Geobacter species revealed that they varied in their capacity for current production. Geobacter metallireducens and G. hydrogenophilus generated high current densities (ca. 0.2 mA/cm(2)), comparable to G. sulfurreducens. G. bremensis, G. chapellei, G. humireducens, and G. uraniireducens, produced much lower currents (ca. 0.05 mA/cm(2)) and G. bemidjiensis was previously found to not produce current. There was no correspondence between the effectiveness of current generation and Fe(III) oxide reduction rates. Some high-current-density strains (G. metallireducens and G. hydrogenophilus) reduced Fe(III)-oxides as fast as some low-current-density strains (G. bremensis, G. humireducens, and G. uraniireducens) whereas other low-current-density strains (G. bemidjiensis and G. chapellei) reduced Fe(III) oxide as slowly as G. sulfurreducens, a high-current-density strain. However, there was a correspondence between the ability to produce higher currents and the ability to grow syntrophically. G. hydrogenophilus was found to grow in co-culture with Methanosarcina barkeri, which is capable of direct interspecies electron transfer (DIET), but not with Methanospirillum hungatei capable only of H2 or formate transfer. Conductive granular activated carbon (GAC) stimulated metabolism of the G. hydrogenophilus - M. barkeri co-culture, consistent with electron exchange via DIET. These findings, coupled with the previous finding that G. metallireducens and G. sulfurreducens are also capable of DIET, suggest that evolution to optimize DIET has fortuitously conferred the capability for high-density current production to some Geobacter species.
电极是人工电子受体,目前尚不清楚某些地杆菌属物种是如何进化到将电极用作末端电子受体的。对不同地杆菌属物种的分析表明,它们产生电流的能力各不相同。金属还原地杆菌和嗜氢地杆菌产生的电流密度较高(约0.2 mA/cm²),与硫还原地杆菌相当。布雷门地杆菌、沙佩勒地杆菌、腐殖质还原地杆菌和铀还原地杆菌产生的电流要低得多(约0.05 mA/cm²),而此前发现贝米吉地杆菌不产生电流。电流产生效率与氧化铁还原速率之间没有对应关系。一些高电流密度菌株(金属还原地杆菌和嗜氢地杆菌)还原氧化铁的速度与一些低电流密度菌株(布雷门地杆菌、腐殖质还原地杆菌和铀还原地杆菌)一样快,而其他低电流密度菌株(贝米吉地杆菌和沙佩勒地杆菌)还原氧化铁的速度与高电流密度菌株硫还原地杆菌一样慢。然而,产生更高电流的能力与互养生长的能力之间存在对应关系。发现嗜氢地杆菌能与巴氏甲烷八叠球菌共培养生长,巴氏甲烷八叠球菌能够进行直接种间电子转移(DIET),但不能与仅能进行氢气或甲酸盐转移的亨盖特甲烷螺菌共培养。导电颗粒活性炭(GAC)刺激了嗜氢地杆菌-巴氏甲烷八叠球菌共培养物的代谢,这与通过DIET进行的电子交换一致。这些发现,再加上之前金属还原地杆菌和硫还原地杆菌也能够进行DIET的发现,表明优化DIET的进化偶然赋予了一些地杆菌属物种产生高密度电流的能力。
Front Microbiol. 2015-7-21
Microbiol Spectr. 2023-8-31
Bioresour Technol. 2014-9-22
Appl Environ Microbiol. 2014-8
Int J Mol Sci. 2025-4-28
Proc Natl Acad Sci U S A. 2025-1-28
Front Microbiol. 2023-3-17
Bioresour Technol. 2014-9-22
Front Microbiol. 2014-5-16
Environ Sci Technol. 2014-6-16
Curr Opin Biotechnol. 2013-12-31
Sci Rep. 2014-5-21
Appl Environ Microbiol. 2014-8