文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

地杆菌属物种中电流产生能力与互营生长之间的联系。

Link between capacity for current production and syntrophic growth in Geobacter species.

作者信息

Rotaru Amelia-Elena, Woodard Trevor L, Nevin Kelly P, Lovley Derek R

机构信息

Department of Microbiology, University of Massachusetts Amherst, MA, USA ; Nordic Center for Earth Evolution, Department of Biology, University of Southern Denmark Odense, Denmark.

Department of Microbiology, University of Massachusetts Amherst, MA, USA.

出版信息

Front Microbiol. 2015 Jul 21;6:744. doi: 10.3389/fmicb.2015.00744. eCollection 2015.


DOI:10.3389/fmicb.2015.00744
PMID:26284037
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4523033/
Abstract

Electrodes are unnatural electron acceptors, and it is yet unknown how some Geobacter species evolved to use electrodes as terminal electron acceptors. Analysis of different Geobacter species revealed that they varied in their capacity for current production. Geobacter metallireducens and G. hydrogenophilus generated high current densities (ca. 0.2 mA/cm(2)), comparable to G. sulfurreducens. G. bremensis, G. chapellei, G. humireducens, and G. uraniireducens, produced much lower currents (ca. 0.05 mA/cm(2)) and G. bemidjiensis was previously found to not produce current. There was no correspondence between the effectiveness of current generation and Fe(III) oxide reduction rates. Some high-current-density strains (G. metallireducens and G. hydrogenophilus) reduced Fe(III)-oxides as fast as some low-current-density strains (G. bremensis, G. humireducens, and G. uraniireducens) whereas other low-current-density strains (G. bemidjiensis and G. chapellei) reduced Fe(III) oxide as slowly as G. sulfurreducens, a high-current-density strain. However, there was a correspondence between the ability to produce higher currents and the ability to grow syntrophically. G. hydrogenophilus was found to grow in co-culture with Methanosarcina barkeri, which is capable of direct interspecies electron transfer (DIET), but not with Methanospirillum hungatei capable only of H2 or formate transfer. Conductive granular activated carbon (GAC) stimulated metabolism of the G. hydrogenophilus - M. barkeri co-culture, consistent with electron exchange via DIET. These findings, coupled with the previous finding that G. metallireducens and G. sulfurreducens are also capable of DIET, suggest that evolution to optimize DIET has fortuitously conferred the capability for high-density current production to some Geobacter species.

摘要

电极是人工电子受体,目前尚不清楚某些地杆菌属物种是如何进化到将电极用作末端电子受体的。对不同地杆菌属物种的分析表明,它们产生电流的能力各不相同。金属还原地杆菌和嗜氢地杆菌产生的电流密度较高(约0.2 mA/cm²),与硫还原地杆菌相当。布雷门地杆菌、沙佩勒地杆菌、腐殖质还原地杆菌和铀还原地杆菌产生的电流要低得多(约0.05 mA/cm²),而此前发现贝米吉地杆菌不产生电流。电流产生效率与氧化铁还原速率之间没有对应关系。一些高电流密度菌株(金属还原地杆菌和嗜氢地杆菌)还原氧化铁的速度与一些低电流密度菌株(布雷门地杆菌、腐殖质还原地杆菌和铀还原地杆菌)一样快,而其他低电流密度菌株(贝米吉地杆菌和沙佩勒地杆菌)还原氧化铁的速度与高电流密度菌株硫还原地杆菌一样慢。然而,产生更高电流的能力与互养生长的能力之间存在对应关系。发现嗜氢地杆菌能与巴氏甲烷八叠球菌共培养生长,巴氏甲烷八叠球菌能够进行直接种间电子转移(DIET),但不能与仅能进行氢气或甲酸盐转移的亨盖特甲烷螺菌共培养。导电颗粒活性炭(GAC)刺激了嗜氢地杆菌-巴氏甲烷八叠球菌共培养物的代谢,这与通过DIET进行的电子交换一致。这些发现,再加上之前金属还原地杆菌和硫还原地杆菌也能够进行DIET的发现,表明优化DIET的进化偶然赋予了一些地杆菌属物种产生高密度电流的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/4523033/ac31287cce05/fmicb-06-00744-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/4523033/cc8adc1180c5/fmicb-06-00744-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/4523033/0b68f34552c3/fmicb-06-00744-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/4523033/ceff2bf99aed/fmicb-06-00744-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/4523033/86838f715e43/fmicb-06-00744-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/4523033/ac31287cce05/fmicb-06-00744-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/4523033/cc8adc1180c5/fmicb-06-00744-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/4523033/0b68f34552c3/fmicb-06-00744-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/4523033/ceff2bf99aed/fmicb-06-00744-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/4523033/86838f715e43/fmicb-06-00744-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/4523033/ac31287cce05/fmicb-06-00744-g005.jpg

相似文献

[1]
Link between capacity for current production and syntrophic growth in Geobacter species.

Front Microbiol. 2015-7-21

[2]
Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms.

mBio. 2018-7-10

[3]
Comparative transcriptomic insights into the mechanisms of electron transfer in Geobacter co-cultures with activated carbon and magnetite.

Sci China Life Sci. 2017-10-31

[4]
The Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter.

Front Microbiol. 2016-6-28

[5]
Detrimental impact of the type VI secretion system on direct interspecies electron transfer.

Microbiol Spectr. 2023-8-31

[6]
Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens.

Appl Environ Microbiol. 2012-8-24

[7]
Expanding the Diet for DIET: Electron Donors Supporting Direct Interspecies Electron Transfer (DIET) in Defined Co-Cultures.

Front Microbiol. 2016-3-1

[8]
Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity.

mBio. 2017-1-17

[9]
Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures.

Bioresour Technol. 2014-9-22

[10]
Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.

Appl Environ Microbiol. 2014-8

引用本文的文献

[1]
Cell surface differences within the genus shape interactions with the extracellular environment.

J Bacteriol. 2025-8-21

[2]
Analysis of Mechanisms for Electron Uptake by 6Ac During Direct Interspecies Electron Transfer.

Int J Mol Sci. 2025-4-28

[3]
Hydrated cable bacteria exhibit protonic conductivity over long distances.

Proc Natl Acad Sci U S A. 2025-1-28

[4]
New insights in uranium bioremediation by cytochromes of the bacterium Geotalea uraniireducens.

J Biol Chem. 2025-2

[5]
A survey of the Desulfuromonadia "cytochromome" provides a glimpse of the unexplored diversity of multiheme cytochromes in nature.

BMC Genomics. 2024-10-20

[6]
Integration of Digestate-Derived Biochar into the Anaerobic Digestion Process through Circular Economic and Environmental Approaches-A Review.

Materials (Basel). 2024-7-16

[7]
Conjugative plasmids inhibit extracellular electron transfer in .

Front Microbiol. 2023-3-17

[8]
Enhancing electrical outputs of the fuel cells with Geobacter sulferreducens by overexpressing nanowire proteins.

Microb Biotechnol. 2023-3

[9]
Identification of parameters needed for optimal anaerobic co-digestion of chicken manure and corn stover.

RSC Adv. 2019-9-19

[10]
Characterization of the genome from , a strain with enhanced current production in bioelectrochemical systems.

RSC Adv. 2019-8-19

本文引用的文献

[1]
Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment.

Bioresour Technol. 2014-10-8

[2]
Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function.

Environ Microbiol. 2015-7

[3]
Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures.

Bioresour Technol. 2014-9-22

[4]
Evidence of Geobacter-associated phage in a uranium-contaminated aquifer.

ISME J. 2015-2

[5]
Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments.

Environ Microbiol. 2015-5

[6]
Plugging in or going wireless: strategies for interspecies electron transfer.

Front Microbiol. 2014-5-16

[7]
Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation.

Environ Sci Technol. 2014-6-16

[8]
Microbial nanowires for bioenergy applications.

Curr Opin Biotechnol. 2013-12-31

[9]
Promoting interspecies electron transfer with biochar.

Sci Rep. 2014-5-21

[10]
Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.

Appl Environ Microbiol. 2014-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索