Desrousseaux Camille, Cueff Régis, Aumeran Claire, Garrait Ghislain, Mailhot-Jensen Bénédicte, Traoré Ousmane, Sautou Valérie
Clermont Université, Université d'Auvergne, C-BIOSENSS, EA 4676, BP 10448, F-63000 Clermont-Ferrand, France; Clermont Université, Université Blaise Pascal et Université d'Auvergne, LMGE, UMR CNRS 6023, F-63000 Clermont-Ferrand, France.
Clermont Université, Université d'Auvergne, C-BIOSENSS, EA 4676, BP 10448, F-63000 Clermont-Ferrand, France.
PLoS One. 2015 Aug 18;10(8):e0135632. doi: 10.1371/journal.pone.0135632. eCollection 2015.
Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1) to nanostructure acrylonitrile-butadiene-styrene (ABS), a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2) to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3) to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.
医疗设备可能会被导致医院感染的微生物生物膜污染。预防此类微生物粘附的策略之一是通过在生物材料表面制造微米或纳米特征来对其进行改性。本研究旨在:(1)使用阳极氧化铝模板对构成灌注装置中连接器的聚合物丙烯腈-丁二烯-苯乙烯(ABS)进行纳米结构化,并控制该过程的可重复性;(2)使用俘获气泡接触角测量技术等方法表征纳米结构化表面的物理化学性质,如润湿性;(3)测试纳米结构对表皮葡萄球菌生物膜形成的影响。阳极氧化铝模具通过在草酸中进行二次阳极氧化制备。该过程具有可重复性。所获得的模具具有六边形排列的直径为50 nm的孔,孔间距为100 nm,长度为100 nm。使用聚合物溶液和两种熔体润湿方法成功制备了丙烯腈-丁二烯-苯乙烯纳米结构。对于所有方法,均获得了纳米尖,但每个样品内部它们的长度不同。出于工业目的和获得更好的可重复性结果,基本上选择了一种方法。平坦的ABS表面呈现出轻微的亲水性,纳米结构化后大致保持不变,在这种情况下观察到的表观润湿性增加是由粗糙度效应解释的。此外,聚合物表面的纳米结构化对表皮葡萄球菌的粘附没有产生任何显著影响。