Department of Food Science, Cornell University, Ithaca, NY, USA.
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
Lett Appl Microbiol. 2019 Oct;69(4):246-251. doi: 10.1111/lam.13201. Epub 2019 Sep 8.
Staphylococcus epidermidis and Staphylococcus aureus, two bacterial strains commonly associated with biofilm-related medical infections and food poisoning, can rapidly colonize biotic and abiotic surfaces. The present study investigates the ability of anodic alumina surfaces with nanoporous surface topography to minimize the attachment and biofilm formation mediated by these pathogenic bacterial strains. Early attachment and subsequent biofilm development were retarded on surfaces with nanopores of 15-25 nm in diameter compared to surfaces with 50-100 nm pore diameter and nanosmooth surfaces. After 30 min of incubation in nutritive media, the biomass accumulation per unit surface area was 2·93 ± 1·72 µm µm for the 15 nm, 3·49 ± 1·97 µm µm for the 25 nm, as compared to 14·04 ± 6·39 µm µm for the nanosmooth, 11·88 ± 9·72 µm µm for the 50 nm and 12·09 ± 11·84 µm µm for the 100 nm surfaces respectively. These findings suggest that anodic alumina with small size nanoscale pores could reduce the incidence of staphylococcal biofilms and infections, and shows promise as a material for a variety of medical applications and food contact surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper reports on a simple, robust and scientifically sound method to reduce attachment and biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis to abiotic surfaces using a carefully designed nanoscale topography. This approach can help to reduce the incidence of staphylococcal biofilms and infections without imposing selective stresses on bacteria, thus preventing the creation of resistant strains.
表皮葡萄球菌和金黄色葡萄球菌是两种与生物膜相关的医学感染和食物中毒有关的细菌菌株,它们可以迅速在生物和非生物表面定植。本研究调查了具有纳米多孔表面形貌的阳极氧化铝表面的能力,以最小化这些致病性细菌菌株介导的附着和生物膜形成。与 50-100nm 孔径和纳米光滑表面相比,直径为 15-25nm 的纳米孔表面上早期附着和随后的生物膜发展受到抑制。在营养培养基中孵育 30 分钟后,单位表面积的生物量积累分别为 15nm 为 2.93±1.72μmμm,25nm 为 3.49±1.97μmμm,而纳米光滑表面为 14.04±6.39μmμm,50nm 为 11.88±9.72μmμm,100nm 为 12.09±11.84μmμm。这些发现表明,具有小尺寸纳米级孔的阳极氧化铝可以降低葡萄球菌生物膜和感染的发生率,并且作为各种医疗应用和食品接触表面的材料具有很大的应用潜力。研究的意义和影响:本文报道了一种简单、稳健和科学合理的方法,使用精心设计的纳米级形貌来减少金黄色葡萄球菌和表皮葡萄球菌对非生物表面的附着和生物膜形成。这种方法可以帮助减少葡萄球菌生物膜和感染的发生,而不会对细菌施加选择性压力,从而防止抗性菌株的产生。