Dugé de Bernonville Thomas, Foureau Emilien, Parage Claire, Lanoue Arnaud, Clastre Marc, Londono Monica Arias, Oudin Audrey, Houillé Benjamin, Papon Nicolas, Besseau Sébastien, Glévarec Gaëlle, Atehortùa Lucia, Giglioli-Guivarc'h Nathalie, St-Pierre Benoit, De Luca Vincenzo, O'Connor Sarah E, Courdavault Vincent
Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia.
BMC Genomics. 2015 Aug 19;16(1):619. doi: 10.1186/s12864-015-1678-y.
Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes.
Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C. roseus transcriptome database containing simultaneously well reconstructed sequences of SLS isoforms and accurate expression levels. After a pair of close mRNA encoding tabersonine 16-hydroxylase (T16H1 and T16H2), this is the second example of improperly assembled transcripts from the MIA pathway in the public transcriptome databases. To construct a more complete transcriptome resource for C. roseus, we re-processed previously published transcriptome data by combining new single assemblies. Care was particularly taken during clustering and filtering steps to remove redundant contigs but not transcripts encoding potential isoforms by monitoring quality reconstruction of MIA genes and specific SLS and T16H isoforms. The new consensus transcriptome allowed a precise estimation of abundance of SLS and T16H isoforms, similar to qPCR measurements.
The C. roseus consensus transcriptome can now be used for characterization of new genes of the MIA pathway. Furthermore, additional isoforms of genes encoding distinct MIA biosynthetic enzymes isoforms could be predicted suggesting the existence of a higher level of complexity in the synthesis of MIA, raising the question of the evolutionary events behind what seems like redundancy.
转录组测序为研究非模式植物提供了丰富资源,如长春花,其通过复杂的生物合成途径产生有价值的单萜吲哚生物碱(MIA),该途径的特征仍在研究中。最近几个联盟开发了专门针对这种植物的转录组数据库,以发现新的生物合成基因。然而,基于这些大型数据集鉴定MIA生物合成中缺失的步骤可能会受到相近转录本和异构体错误组装的限制,即使有多个可用的转录组也是如此。
裂环马钱子苷合酶(SLS)是一种细胞色素P450酶,在MIA前体裂环马钱子苷的生物合成中催化马钱子苷的异常开环反应。我们在此报告了长春花中一种新的SLS异构体SLS2的鉴定和表征,它与先前表征的SLS1共享97%的核苷酸序列同一性。我们还发现这两种异构体都能将裂环马钱子苷进一步氧化为裂环番木鳖苷。然而,SLS2具有不同的表达谱,是构成MIA积累主要部位的地上器官中的主要异构体。不幸的是,我们无法找到一个当前的长春花转录组数据库,该数据库同时包含SLS异构体的良好重建序列和准确的表达水平。在一对编码异胡豆苷16-羟化酶(T16H1和T16H2)的相近mRNA之后,这是公共转录组数据库中MIA途径中组装不当转录本的第二个例子。为了构建一个更完整的长春花转录组资源,我们通过组合新的单组件对先前发表的转录组数据进行了重新处理。在聚类和过滤步骤中特别小心,通过监测MIA基因以及特定的SLS和T16H异构体的质量重建来去除冗余重叠群,但不去除编码潜在异构体的转录本。新的共有转录组允许精确估计SLS和T16H异构体的丰度,类似于qPCR测量。
长春花共有转录组现在可用于表征MIA途径的新基因。此外,可以预测编码不同MIA生物合成酶异构体的基因的其他异构体,这表明MIA合成中存在更高水平的复杂性,这就提出了看似冗余背后的进化事件问题。