Smith Mark Thomas, Bennett Anthony M, Hunt Jeremy M, Bundy Bradley C
Dept. of Chemical Engineering, Brigham Young University, UT, 84602.
Biotechnol Prog. 2015 Nov-Dec;31(6):1716-9. doi: 10.1002/btpr.2157. Epub 2015 Aug 28.
Cell-free protein synthesis is a promising tool to take biotechnology outside of the cell. A cell-free approach provides distinct advantages over in vivo systems including open access to the reaction environment and direct control over all chemical components for facile optimization and synthetic biology integration. Promising applications of cell-free systems include portable diagnostics, biotherapeutics expression, rational protein engineering, and biocatalyst production. The highest yielding and most economical cell-free systems use an extract composed of the soluble component of lysed Escherichia coli. Although E. coli lysis can be highly efficient (>99.999%), one persistent challenge is that the extract remains contaminated with up to millions of cells per mL. In this work, we examine the potential of multiple decontamination strategies to further reduce or eliminate bacteria in cell-free systems. Two strategies, sterile filtration and lyophilization, effectively eliminate contaminating cells while maintaining the systems' protein synthesis capabilities. Lyophilization provides the additional benefit of long-term stability at storage above freezing. Technologies for personalized, portable medicine and diagnostics can be expanded based on these foundational sterilized and completely "cell-free" systems.
无细胞蛋白质合成是一种有望将生物技术带出细胞范畴的工具。无细胞方法相较于体内系统具有显著优势,包括可直接接触反应环境以及能直接控制所有化学成分,便于进行优化和整合合成生物学。无细胞系统的潜在应用包括便携式诊断、生物治疗药物表达、合理的蛋白质工程以及生物催化剂生产。产量最高且最经济的无细胞系统使用由裂解的大肠杆菌可溶性成分组成的提取物。尽管大肠杆菌的裂解效率可能很高(>99.999%),但一个持续存在的挑战是提取物每毫升仍会被多达数百万个细胞污染。在这项工作中,我们研究了多种去污策略在进一步减少或消除无细胞系统中细菌方面的潜力。两种策略,即无菌过滤和冻干,能有效消除污染细胞,同时保持系统的蛋白质合成能力。冻干还具有在高于冰点的温度下储存时长期稳定性的额外优势。基于这些基础的无菌且完全“无细胞”的系统,可以拓展个性化、便携式医学和诊断技术。