Suppr超能文献

大肠杆菌粗提物的无细胞混合用于原型设计和合理构建高滴度甲羟戊酸合成体系。

Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis.

作者信息

Dudley Quentin M, Anderson Kim C, Jewett Michael C

机构信息

Department of Chemical and Biological Engineering, ‡Chemistry of Life Processes Institute, Northwestern University , Evanston, Illinois 60208, United States.

Robert H. Lurie Comprehensive Cancer Center, ∥Simpson Querrey Institute, Northwestern University , Chicago, Illinois 60611, United States.

出版信息

ACS Synth Biol. 2016 Dec 16;5(12):1578-1588. doi: 10.1021/acssynbio.6b00154. Epub 2016 Aug 22.

Abstract

Cell-free metabolic engineering (CFME) is advancing a powerful paradigm for accelerating the design and synthesis of biosynthetic pathways. However, as most cell-free biomolecule synthesis systems to date use purified enzymes, energy and cofactor balance can be limiting. To address this challenge, we report a new CFME framework for building biosynthetic pathways by mixing multiple crude lysates, or extracts. In our modular approach, cell-free lysates, each selectively enriched with an overexpressed enzyme, are generated in parallel and then combinatorically mixed to construct a full biosynthetic pathway. Endogenous enzymes in the cell-free extract fuel high-level energy and cofactor regeneration. As a model, we apply our framework to synthesize mevalonate, an intermediate in isoprenoid synthesis. We use our approach to rapidly screen enzyme variants, optimize enzyme ratios, and explore cofactor landscapes for improving pathway performance. Further, we show that genomic deletions in the source strain redirect metabolic flux in resultant lysates. In an optimized system, mevalonate was synthesized at 17.6 g·L (119 mM) over 20 h, resulting in a volumetric productivity of 0.88 g·L·hr. We also demonstrate that this system can be lyophilized and retain biosynthesis capability. Our system catalyzes ∼1250 turnover events for the cofactor NAD and demonstrates the ability to rapidly prototype and debug enzymatic pathways in vitro for compelling metabolic engineering and synthetic biology applications.

摘要

无细胞代谢工程(CFME)正在推动一种强大的范式,以加速生物合成途径的设计与合成。然而,由于迄今为止大多数无细胞生物分子合成系统使用纯化的酶,能量和辅因子平衡可能会受到限制。为应对这一挑战,我们报告了一种新的CFME框架,通过混合多种粗裂解物或提取物来构建生物合成途径。在我们的模块化方法中,分别选择性富集过表达酶的无细胞裂解物并行生成,然后进行组合混合以构建完整的生物合成途径。无细胞提取物中的内源性酶为高水平的能量和辅因子再生提供动力。作为一个模型,我们应用我们的框架来合成甲羟戊酸,这是类异戊二烯合成中的一种中间体。我们使用我们的方法快速筛选酶变体、优化酶比例,并探索辅因子环境以改善途径性能。此外,我们表明源菌株中的基因组缺失会改变所得裂解物中的代谢通量。在一个优化的系统中,甲羟戊酸在20小时内以17.6 g·L(119 mM)的产量合成,体积产率为0.88 g·L·hr。我们还证明了该系统可以冻干并保留生物合成能力。我们的系统催化辅因子NAD发生约1250次周转事件,并展示了在体外快速构建酶促途径原型和调试的能力,可用于引人注目的代谢工程和合成生物学应用。

相似文献

2
Cell-Free Synthetic Biology for Pathway Prototyping.用于途径原型设计的无细胞合成生物学
Methods Enzymol. 2018;608:31-57. doi: 10.1016/bs.mie.2018.04.029. Epub 2018 Jun 27.
7
Controlling cell-free metabolism through physiochemical perturbations.通过物理化学干扰控制无细胞代谢。
Metab Eng. 2018 Jan;45:86-94. doi: 10.1016/j.ymben.2017.11.005. Epub 2017 Nov 15.

引用本文的文献

1
4
Cell-Free Gene Expression: Methods and Applications.无细胞基因表达:方法与应用
Chem Rev. 2025 Jan 8;125(1):91-149. doi: 10.1021/acs.chemrev.4c00116. Epub 2024 Dec 19.
5
Carbon Negative Synthesis of Amino Acids Using a Cell-Free-Based Biocatalyst.使用无细胞生物催化剂进行氨基酸的负碳合成。
ACS Synth Biol. 2024 Dec 20;13(12):3961-3975. doi: 10.1021/acssynbio.4c00359. Epub 2024 Nov 21.

本文引用的文献

6
Engineering Cellular Metabolism.工程细胞代谢。
Cell. 2016 Mar 10;164(6):1185-1197. doi: 10.1016/j.cell.2016.02.004.
8
Developing fermentative terpenoid production for commercial usage.开发用于商业用途的发酵萜类化合物生产。
Curr Opin Biotechnol. 2016 Feb;37:114-119. doi: 10.1016/j.copbio.2015.10.007. Epub 2015 Dec 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验