Dudley Quentin M, Anderson Kim C, Jewett Michael C
Department of Chemical and Biological Engineering, ‡Chemistry of Life Processes Institute, Northwestern University , Evanston, Illinois 60208, United States.
Robert H. Lurie Comprehensive Cancer Center, ∥Simpson Querrey Institute, Northwestern University , Chicago, Illinois 60611, United States.
ACS Synth Biol. 2016 Dec 16;5(12):1578-1588. doi: 10.1021/acssynbio.6b00154. Epub 2016 Aug 22.
Cell-free metabolic engineering (CFME) is advancing a powerful paradigm for accelerating the design and synthesis of biosynthetic pathways. However, as most cell-free biomolecule synthesis systems to date use purified enzymes, energy and cofactor balance can be limiting. To address this challenge, we report a new CFME framework for building biosynthetic pathways by mixing multiple crude lysates, or extracts. In our modular approach, cell-free lysates, each selectively enriched with an overexpressed enzyme, are generated in parallel and then combinatorically mixed to construct a full biosynthetic pathway. Endogenous enzymes in the cell-free extract fuel high-level energy and cofactor regeneration. As a model, we apply our framework to synthesize mevalonate, an intermediate in isoprenoid synthesis. We use our approach to rapidly screen enzyme variants, optimize enzyme ratios, and explore cofactor landscapes for improving pathway performance. Further, we show that genomic deletions in the source strain redirect metabolic flux in resultant lysates. In an optimized system, mevalonate was synthesized at 17.6 g·L (119 mM) over 20 h, resulting in a volumetric productivity of 0.88 g·L·hr. We also demonstrate that this system can be lyophilized and retain biosynthesis capability. Our system catalyzes ∼1250 turnover events for the cofactor NAD and demonstrates the ability to rapidly prototype and debug enzymatic pathways in vitro for compelling metabolic engineering and synthetic biology applications.
无细胞代谢工程(CFME)正在推动一种强大的范式,以加速生物合成途径的设计与合成。然而,由于迄今为止大多数无细胞生物分子合成系统使用纯化的酶,能量和辅因子平衡可能会受到限制。为应对这一挑战,我们报告了一种新的CFME框架,通过混合多种粗裂解物或提取物来构建生物合成途径。在我们的模块化方法中,分别选择性富集过表达酶的无细胞裂解物并行生成,然后进行组合混合以构建完整的生物合成途径。无细胞提取物中的内源性酶为高水平的能量和辅因子再生提供动力。作为一个模型,我们应用我们的框架来合成甲羟戊酸,这是类异戊二烯合成中的一种中间体。我们使用我们的方法快速筛选酶变体、优化酶比例,并探索辅因子环境以改善途径性能。此外,我们表明源菌株中的基因组缺失会改变所得裂解物中的代谢通量。在一个优化的系统中,甲羟戊酸在20小时内以17.6 g·L(119 mM)的产量合成,体积产率为0.88 g·L·hr。我们还证明了该系统可以冻干并保留生物合成能力。我们的系统催化辅因子NAD发生约1250次周转事件,并展示了在体外快速构建酶促途径原型和调试的能力,可用于引人注目的代谢工程和合成生物学应用。