Suppr超能文献

基于心电图和呼吸努力的睡眠阶段分类

Sleep stage classification with ECG and respiratory effort.

作者信息

Fonseca Pedro, Long Xi, Radha Mustafa, Haakma Reinder, Aarts Ronald M, Rolink Jérôme

机构信息

Philips Research, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands. Department of Electrical Engineering, Eindhoven University of Technology, Postbus 513, 5600MB Eindhoven, The Netherlands.

出版信息

Physiol Meas. 2015 Oct;36(10):2027-40. doi: 10.1088/0967-3334/36/10/2027. Epub 2015 Aug 19.

Abstract

Automatic sleep stage classification with cardiorespiratory signals has attracted increasing attention. In contrast to the traditional manual scoring based on polysomnography, these signals can be measured using advanced unobtrusive techniques that are currently available, promising the application for personal and continuous home sleep monitoring. This paper describes a methodology for classifying wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) light and deep sleep on a 30 s epoch basis. A total of 142 features were extracted from electrocardiogram and thoracic respiratory effort measured with respiratory inductance plethysmography. To improve the quality of these features, subject-specific Z-score normalization and spline smoothing were used to reduce between-subject and within-subject variability. A modified sequential forward selection feature selector procedure was applied, yielding 80 features while preventing the introduction of bias in the estimation of cross-validation performance. PSG data from 48 healthy adults were used to validate our methods. Using a linear discriminant classifier and a ten-fold cross-validation, we achieved a Cohen's kappa coefficient of 0.49 and an accuracy of 69% in the classification of wake, REM, light, and deep sleep. These values increased to kappa = 0.56 and accuracy = 80% when the classification problem was reduced to three classes, wake, REM sleep, and NREM sleep.

摘要

利用心肺信号进行自动睡眠阶段分类已引起越来越多的关注。与基于多导睡眠图的传统人工评分不同,这些信号可以使用当前可用的先进非侵入性技术进行测量,有望应用于个人和持续的家庭睡眠监测。本文描述了一种基于30秒时段对清醒、快速眼动(REM)睡眠以及非快速眼动(NREM)浅睡眠和深睡眠进行分类的方法。从心电图和通过呼吸感应体积描记法测量的胸部呼吸努力中总共提取了142个特征。为了提高这些特征的质量,使用了受试者特异性Z分数归一化和样条平滑来减少受试者间和受试者内的变异性。应用了一种改进的顺序向前选择特征选择程序,产生了80个特征,同时防止在交叉验证性能估计中引入偏差。来自48名健康成年人的多导睡眠图数据用于验证我们的方法。使用线性判别分类器和十折交叉验证,我们在清醒、REM、浅睡眠和深睡眠分类中获得了0.49的科恩kappa系数和69%的准确率。当分类问题简化为清醒、REM睡眠和NREM睡眠三类时,这些值分别提高到kappa = 0.56和准确率 = 80%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验