Lee Joonnyong, Kim Hee Chan, Lee Yu Jin, Lee Saram
Mellowing Factory Co. Ltd, Seoul, 06535 South Korea.
Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080 South Korea.
Biomed Eng Lett. 2023 Jun 8;13(4):649-658. doi: 10.1007/s13534-023-00288-6. eCollection 2023 Nov.
With the advancement of deep neural networks in biosignals processing, the performance of automatic sleep staging algorithms has improved significantly. However, sleep staging using only non-electroencephalogram features has not been as successful, especially following the current American Association of Sleep Medicine (AASM) standards. This study presents a fine-tuning based approach to widely generalizable automatic sleep staging using heart rate and movement features trained and validated on large databases of polysomnography.
A deep neural network is used to predict sleep stages using heart rate and movement features. The model is optimized on a dataset of 8731 nights of polysomnography recordings labeled using the Rechtschaffen & Kales scoring system, and fine-tuned to a smaller dataset of 1641 AASM-labeled recordings. The model prior to and after fine-tuning is validated on two AASM-labeled external datasets totaling 1183 recordings. In order to measure the performance of the model, the output of the optimized model is compared to reference expert-labeled sleep stages using accuracy and Cohen's κ as key metrics.
The fine-tuned model showed accuracy of 76.6% with Cohen's κ of 0.606 in one of the external validation datasets, outperforming a previously reported result, and showed accuracy of 81.0% with Cohen's κ of 0.673 in another external validation dataset.
These results indicate that the proposed model is generalizable and effective in predicting sleep stages using features which can be extracted from non-contact sleep monitors. This holds valuable implications for future development of home sleep evaluation systems.
随着深度神经网络在生物信号处理方面的进展,自动睡眠分期算法的性能有了显著提高。然而,仅使用非脑电图特征进行睡眠分期并不那么成功,尤其是按照当前美国睡眠医学会(AASM)的标准。本研究提出了一种基于微调的方法,用于使用在大型多导睡眠图数据库上训练和验证的心率和运动特征进行广泛通用的自动睡眠分期。
使用深度神经网络通过心率和运动特征预测睡眠阶段。该模型在一个使用 Rechtschaffen & Kales 评分系统标注的 8731 夜多导睡眠图记录数据集上进行优化,并在一个较小的 1641 个 AASM 标注记录数据集上进行微调。在两个总计 1183 个记录的 AASM 标注外部数据集上对微调前后的模型进行验证。为了衡量模型的性能,使用准确率和 Cohen's κ 作为关键指标,将优化模型的输出与参考专家标注的睡眠阶段进行比较。
在其中一个外部验证数据集中,微调后的模型准确率为 76.6%,Cohen's κ 为 0.606,优于先前报道的结果;在另一个外部验证数据集中,准确率为 81.0%,Cohen's κ 为 0.673。
这些结果表明,所提出的模型在使用可从非接触式睡眠监测器提取的特征预测睡眠阶段方面具有通用性和有效性。这对家庭睡眠评估系统的未来发展具有重要意义。