Fonseca Pedro, Aarts Ronald M, Long Xi, Rolink Jérôme, Leonhardt Steffen
Philips Research, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands. Department of Electrical Engineering, Eindhoven University of Technology, Postbus 513, 5600MB Eindhoven, The Netherlands.
Physiol Meas. 2016 Jan;37(1):67-82. doi: 10.1088/0967-3334/37/1/67. Epub 2015 Dec 7.
Recent work in unobtrusive sleep/wake classification has shown that cardiac and respiratory features can help improve classification performance. Nevertheless, actigraphy remains the single most discriminative modality for this task. Unfortunately, it requires the use of dedicated devices in addition to the sensors used to measure electrocardiogram (ECG) or respiratory effort. This paper proposes a method to estimate actigraphy from the body movement artifacts present in the ECG and respiratory inductance plethysmography (RIP) based on the time-frequency analysis of those signals. Using a continuous wavelet transform to analyze RIP, and ECG and RIP combined, it provides a surrogate measure of actigraphy with moderate correlation (for ECG+RIP, ρ = 0.74, p < 0.001) and agreement (mean bias ratio of 0.94 and 95% agreement ratios of 0.11 and 8.45) with reference actigraphy. More important, it can be used as a replacement of actigraphy in sleep/wake classification: after cross-validation with a data set comprising polysomnographic (PSG) recordings of 15 healthy subjects and 25 insomniacs annotated by an external sleep technician, it achieves a statistically non-inferior classification performance when used together with respiratory features (average κ of 0.64 for 15 healthy subjects, and 0.50 for a dataset with 40 healthy and insomniac subjects), and when used together with respiratory and cardiac features (average κ of 0.66 for 15 healthy subjects, and 0.56 for 40 healthy and insomniac subjects). Since this method eliminates the need for a dedicated actigraphy device, it reduces the number of sensors needed for sleep/wake classification to a single sensor when using respiratory features, and to two sensors when using respiratory and cardiac features without any loss in performance. It offers a major benefit in terms of comfort for long-term home monitoring and is immediately applicable for legacy ECG and RIP monitoring devices already used in clinical practice and which do not have an accelerometer built-in.
近期关于非侵入式睡眠/觉醒分类的研究表明,心脏和呼吸特征有助于提高分类性能。然而,活动记录仪仍然是这项任务中最具判别力的单一模式。不幸的是,除了用于测量心电图(ECG)或呼吸努力的传感器外,它还需要使用专用设备。本文提出了一种基于心电图和呼吸感应体积描记法(RIP)中存在的身体运动伪迹来估计活动记录仪的方法,该方法基于对这些信号的时频分析。使用连续小波变换分析RIP以及ECG和RIP的组合,它提供了与参考活动记录仪具有中等相关性(对于ECG + RIP,ρ = 0.74,p < 0.001)和一致性(平均偏差率为0.94,95%一致性率为0.11和8.45)的活动记录仪替代测量值。更重要的是,它可以在睡眠/觉醒分类中用作活动记录仪的替代品:在对包含15名健康受试者和25名失眠症患者的多导睡眠图(PSG)记录进行交叉验证后,这些记录由外部睡眠技术人员进行注释,当与呼吸特征一起使用时(15名健康受试者的平均κ为0.64,40名健康和失眠症患者的数据集的平均κ为0.50),以及当与呼吸和心脏特征一起使用时(15名健康受试者的平均κ为0.66,40名健康和失眠症患者的平均κ为0.56),它实现了统计学上非劣效的分类性能。由于该方法无需专用的活动记录仪设备,因此在使用呼吸特征时,将睡眠/觉醒分类所需的传感器数量减少到单个传感器,在使用呼吸和心脏特征时减少到两个传感器,而不会损失任何性能。它在长期家庭监测的舒适度方面提供了重大益处,并且可立即应用于临床实践中已使用的传统ECG和RIP监测设备,这些设备没有内置加速度计。