Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology , Trondheim, NO-7491, Norway.
Bren School of Environmental Management, University of California , Santa Barbara, California 93106, United States.
Environ Sci Technol. 2015 Sep 15;49(18):11218-26. doi: 10.1021/acs.est.5b01558. Epub 2015 Sep 4.
Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.
气候变化缓解需要在全球范围内进行大规模的技术变革,如果成功实施,将极大地影响产品和服务的生产和消费方式。为了预测在气候缓解情景下产品的生命周期环境影响,我们提出了一个综合混合生命周期评估模型的建模框架,涵盖了九个世界区域。通过预测 2050 年 2°C 情景下技术和资源的变化,我们对生命周期评估数据库和多区域投入产出表进行了调整。我们将这种建模的结果称为“具有综合情景的技术混合环境经济模型”(THEMIS)。作为一个案例研究,我们在集中太阳能的综合环境评估中应用 THEMIS。该工厂在 2010 年不同世界区域的生命周期温室气体排放量范围为 33-95gCO2eq./kWh,到 2050 年降至 30-87gCO2eq./kWh。使用区域生命周期数据会产生有见地的结果。更普遍地说,这些结果还强调需要有系统的生命周期框架,以长期捕捉大规模政策的实际后果和反馈效应。