Scalabrino Miranda L, Boye Sanford L, Fransen Kathryn M H, Noel Jennifer M, Dyka Frank M, Min Seok Hong, Ruan Qing, De Leeuw Charles N, Simpson Elizabeth M, Gregg Ronald G, McCall Maureen A, Peachey Neal S, Boye Shannon E
Department of Ophthalmology and.
Department of Ophthalmology and Visual Sciences.
Hum Mol Genet. 2015 Nov 1;24(21):6229-39. doi: 10.1093/hmg/ddv341. Epub 2015 Aug 26.
Adeno-associated virus (AAV) effectively targets therapeutic genes to photoreceptors, pigment epithelia, Müller glia and ganglion cells of the retina. To date, no one has shown the ability to correct, with gene replacement, an inherent defect in bipolar cells (BCs), the excitatory interneurons of the retina. Targeting BCs with gene replacement has been difficult primarily due to the relative inaccessibility of BCs to standard AAV vectors. This approach would be useful for restoration of vision in patients with complete congenital stationary night blindness (CSNB1), where signaling through the ON BCs is eliminated due to mutations in their G-protein-coupled cascade genes. For example, the majority of CSNB1 patients carry a mutation in nyctalopin (NYX), which encodes a protein essential for proper localization of the TRPM1 cation channel required for ON BC light-evoked depolarization. As a group, CSNB1 patients have a normal electroretinogram (ERG) a-wave, indicative of photoreceptor function, but lack a b-wave due to defects in ON BC signaling. Despite retinal dysfunction, the retinas of CSNB1 patients do not degenerate. The Nyx(nob) mouse model of CSNB1 faithfully mimics this phenotype. Here, we show that intravitreally injected, rationally designed AAV2(quadY-F+T-V) containing a novel 'Ple155' promoter drives either GFP or YFP_Nyx in postnatal Nyx(nob) mice. In treated Nyx(nob) retina, robust and targeted Nyx transgene expression in ON BCs partially restored the ERG b-wave and, at the cellular level, signaling in ON BCs. Our results support the potential for gene delivery to BCs and gene replacement therapy in human CSNB1.
腺相关病毒(AAV)能有效地将治疗性基因靶向视网膜的光感受器、色素上皮细胞、穆勒胶质细胞和神经节细胞。迄今为止,还没有人能够通过基因替代来纠正双极细胞(BCs)这一视网膜兴奋性中间神经元的固有缺陷。用基因替代靶向双极细胞一直很困难,主要是因为双极细胞相对难以被标准的AAV载体所接触。这种方法对于完全性先天性静止性夜盲(CSNB1)患者的视力恢复将是有用的,在这类患者中,由于其G蛋白偶联级联基因的突变,通过ON双极细胞的信号传导被消除。例如,大多数CSNB1患者在夜盲蛋白(NYX)中携带突变,NYX编码一种蛋白质,该蛋白质对于ON双极细胞光诱发去极化所需的TRPM1阳离子通道的正确定位至关重要。总体而言,CSNB1患者的视网膜电图(ERG)a波正常,表明光感受器功能正常,但由于ON双极细胞信号传导缺陷而缺乏b波。尽管存在视网膜功能障碍,但CSNB1患者的视网膜不会退化。CSNB1的Nyx(nob)小鼠模型忠实地模拟了这种表型。在这里,我们表明,玻璃体内注射的、经过合理设计的含有新型“Ple155”启动子的AAV2(quadY - F + T - V)在出生后的Nyx(nob)小鼠中驱动GFP或YFP_Nyx表达。在接受治疗的Nyx(nob)视网膜中,ON双极细胞中强大且靶向的Nyx转基因表达部分恢复了ERG b波,并且在细胞水平上恢复了ON双极细胞中的信号传导。我们的结果支持了向双极细胞进行基因递送以及对人类CSNB1进行基因替代治疗的潜力。