Hernández Vivian M, Hegeman Daniel J, Cui Qiaoling, Kelver Daniel A, Fiske Michael P, Glajch Kelly E, Pitt Jason E, Huang Tina Y, Justice Nicholas J, Chan C Savio
Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and.
Institute of Molecular Medicine, University of Texas, Houston, Texas 77030.
J Neurosci. 2015 Aug 26;35(34):11830-47. doi: 10.1523/JNEUROSCI.4672-14.2015.
Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction.
Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the markers parvalbumin and Npas1. Our study provides evidence that parvalbumin and Npas1 neurons have different topologies within the basal ganglia.
有力证据表明,基底神经节中的一个核团——外侧苍白球(GPe)的病理活动,导致了帕金森病等多种运动障碍的运动症状。最近的研究对GPe由单一、同质的神经元群体组成这一观点提出了挑战,该群体在间接通路中起简单中继作用。然而,我们仍未完全了解构成GPe的神经元的多样性。具体而言,需要一个更精确的分类方案来更好地描述不同GPe神经元类别的基本生物学特性和功能。为此,我们在Npas1基因的调控元件下生成了一种新型多顺反子BAC(细菌人工染色体)转基因小鼠品系。通过组合转基因和免疫组织化学方法,我们发现GPe中表达小白蛋白的神经元和表达Npas1的神经元代表两种不重叠的细胞类别,分别占GPe神经元总数的55%和27%。这两种通过基因鉴定的细胞类别主要分别投射到丘脑底核和纹状体。此外,表达小白蛋白的神经元和表达Npas1的神经元在自主和驱动放电特性、内在离子电导的表达以及对慢性6-羟基多巴胺损伤的反应性方面存在差异。总之,我们的数据表明,表达小白蛋白的神经元和表达Npas1的神经元是GPe神经元的两种不同功能类别。这项工作修正了我们对GPe的理解,并为其功能和功能障碍的未来研究奠定了基础。
直到最近,外侧苍白球(GPe)内组成神经元的异质性仍未得到充分认识。我们通过发现两种主要的GPe神经元类别解决了这一知识空白,这两种类别通过其对标记物小白蛋白和Npas1的不重叠表达来鉴定。我们的研究提供了证据,表明小白蛋白和Npas1神经元在基底神经节内具有不同的拓扑结构。