Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois.
Department of Biology, University of Texas at San Antonio, San Antonio 78249, Texas.
J Neurosci. 2021 May 5;41(18):4036-4059. doi: 10.1523/JNEUROSCI.2210-20.2021. Epub 2021 Mar 17.
We have previously established that PV neurons and Npas1 neurons are distinct neuron classes in the external globus pallidus (GPe): they have different topographical, electrophysiological, circuit, and functional properties. Aside from Foxp2 neurons, which are a unique subclass within the Npas1 class, we lack driver lines that effectively capture other GPe neuron subclasses. In this study, we examined the utility of Kcng4-Cre, Npr3-Cre, and Npy2r-Cre mouse lines (both males and females) for the delineation of GPe neuron subtypes. By using these novel driver lines, we have provided the most exhaustive investigation of electrophysiological studies of GPe neuron subtypes to date. Corroborating our prior studies, GPe neurons can be divided into two statistically distinct clusters that map onto PV and Npas1 classes. By combining optogenetics and machine learning-based tracking, we showed that optogenetic perturbation of GPe neuron subtypes generated unique behavioral structures. Our findings further highlighted the dissociable roles of GPe neurons in regulating movement and anxiety-like behavior. We concluded that Npr3 neurons and Kcng4 neurons are distinct subclasses of Npas1 neurons and PV neurons, respectively. Finally, by examining local collateral connectivity, we inferred the circuit mechanisms involved in the motor patterns observed with optogenetic perturbations. In summary, by identifying mouse lines that allow for manipulations of GPe neuron subtypes, we created new opportunities for interrogations of cellular and circuit substrates that can be important for motor function and dysfunction. Within the basal ganglia, the external globus pallidus (GPe) has long been recognized for its involvement in motor control. However, we lacked an understanding of precisely how movement is controlled at the GPe level as a result of its cellular complexity. In this study, by using transgenic and cell-specific approaches, we showed that genetically-defined GPe neuron subtypes have distinct roles in regulating motor patterns. In addition, the contributions of these neuron subtypes are in part shaped by the local, inhibitory connections within the GPe. In sum, we have established the foundation for future investigations of motor function and disease pathophysiology.
我们之前已经确定,苍白球外侧部(GPe)中的 PV 神经元和 Npas1 神经元是不同的神经元类型:它们具有不同的拓扑、电生理、回路和功能特性。除了 Foxp2 神经元,它们是 Npas1 类中的一个独特亚类,我们缺乏有效捕获其他 GPe 神经元亚类的驱动线。在这项研究中,我们检查了 Kcng4-Cre、Npr3-Cre 和 Npy2r-Cre 小鼠品系(雄性和雌性)在描绘 GPe 神经元亚型方面的效用。通过使用这些新的驱动线,我们提供了迄今为止对 GPe 神经元亚型的电生理研究最详尽的调查。与我们之前的研究一致,GPe 神经元可以分为两个在统计学上有明显区别的簇,分别对应于 PV 和 Npas1 类。通过结合光遗传学和基于机器学习的跟踪,我们表明 GPe 神经元亚型的光遗传学扰动产生了独特的行为结构。我们的研究结果进一步强调了 GPe 神经元在调节运动和焦虑样行为方面的可分离作用。我们得出结论,Npr3 神经元和 Kcng4 神经元分别是 Npas1 神经元和 PV 神经元的不同亚类。最后,通过检查局部侧枝连接,我们推断出涉及光遗传学扰动观察到的运动模式的回路机制。总之,通过鉴定允许操纵 GPe 神经元亚型的小鼠品系,我们为研究对运动功能和功能障碍很重要的细胞和回路基质创造了新的机会。在基底神经节中,苍白球外侧部(GPe)因其参与运动控制而长期以来受到关注。然而,由于其细胞复杂性,我们并不清楚运动是如何在 GPe 水平上得到控制的。在这项研究中,通过使用转基因和细胞特异性方法,我们表明,遗传定义的 GPe 神经元亚型在调节运动模式方面具有不同的作用。此外,这些神经元亚型的贡献部分由 GPe 内的局部抑制性连接形成。总之,我们为未来的运动功能和疾病病理生理学研究奠定了基础。