Souchier E, D'Acapito F, Noé P, Blaise P, Bernard M, Jousseaume V
Univ. Grenoble Alpes, F-38000 Grenoble, France.
Phys Chem Chem Phys. 2015 Oct 7;17(37):23931-7. doi: 10.1039/c5cp03601a. Epub 2015 Aug 27.
Conductive bridging random access memories (CBRAMs) are one of the most promising emerging technologies for the next generation of non-volatile memory. However, the lack of understanding of the switching mechanism at the nanoscale level prevents successful transfer to industry. In this paper, Ag/GeSx/W CBRAM devices are analyzed using depth selective X-ray Absorption Spectroscopy before and after switching. The study of the local environment around Ag atoms in such devices reveals that Ag is in two very distinct environments with short Ag-S bonds due to Ag dissolved in the GeSx matrix, and longer Ag-Ag bonds related to an Ag metallic phase. These experiments allow the conclusion that the switching process involves the formation of metallic Ag nano-filaments initiated at the Ag electrode. All these experimental features are well supported by ab initio molecular dynamics simulations showing that Ag favorably bonds to S atoms, and permit the proposal of a model at the microscopic level that can explain the instability of the conductive state in these Ag-GeSx CBRAM devices. Finally, the principle of the nondestructive method described here can be extended to other types of resistive memory concepts.
导电桥接随机存取存储器(CBRAM)是下一代非易失性存储器最具前景的新兴技术之一。然而,由于在纳米尺度上对开关机制缺乏了解,阻碍了其向工业领域的成功转化。本文利用深度选择性X射线吸收光谱对Ag/GeSx/W CBRAM器件在开关前后进行了分析。对这类器件中Ag原子周围局部环境的研究表明,由于Ag溶解在GeSx基体中,Ag处于两种截然不同的环境中,一种是具有短Ag-S键的环境,另一种是与Ag金属相相关的较长Ag-Ag键的环境。这些实验得出的结论是,开关过程涉及在Ag电极处引发的金属Ag纳米丝的形成。所有这些实验特征都得到了从头算分子动力学模拟的有力支持,该模拟表明Ag与S原子形成了有利的键合,并提出了一个微观层面的模型,该模型可以解释这些Ag-GeSx CBRAM器件中导电状态的不稳定性。最后,这里描述的无损方法的原理可以扩展到其他类型的电阻式存储器概念。