Foland-Ross Lara C, Sacchet Matthew D, Prasad Gautam, Gilbert Brooke, Thompson Paul M, Gotlib Ian H
Psychology Department, Stanford University, CA, USA.
Psychology Department, Stanford University, CA, USA; Neurosciences Program, Stanford University, CA, USA.
Int J Dev Neurosci. 2015 Nov;46:125-31. doi: 10.1016/j.ijdevneu.2015.07.007. Epub 2015 Aug 24.
Given the increasing prevalence of Major Depressive Disorder and recent advances in preventative treatments for this disorder, an important challenge in pediatric neuroimaging is the early identification of individuals at risk for depression. We examined whether machine learning can be used to predict the onset of depression at the individual level. Thirty-three never-disordered adolescents (10-15 years old) underwent structural MRI. Participants were followed for 5 years to monitor the emergence of clinically significant depressive symptoms. We used support vector machines (SVMs) to test whether baseline cortical thickness could reliably distinguish adolescents who develop depression from adolescents who remained free of any Axis I disorder. Accuracies from subsampled cross-validated classification were used to assess classifier performance. Baseline cortical thickness correctly predicted the future onset of depression with an overall accuracy of 70% (69% sensitivity, 70% specificity; p=0.021). Examination of SVM feature weights indicated that the right medial orbitofrontal, right precentral, left anterior cingulate, and bilateral insular cortex contributed most strongly to this classification. These findings indicate that cortical gray matter structure can predict the subsequent onset of depression. An important direction for future research is to elucidate mechanisms by which these anomalies in gray matter structure increase risk for developing this disorder.
鉴于重度抑郁症的患病率不断上升以及该疾病预防治疗的最新进展,儿科神经影像学面临的一项重要挑战是早期识别有抑郁症风险的个体。我们研究了机器学习是否可用于在个体层面预测抑郁症的发作。33名从未患过病的青少年(10 - 15岁)接受了结构磁共振成像(MRI)检查。对参与者进行了5年的随访,以监测具有临床意义的抑郁症状的出现。我们使用支持向量机(SVM)来测试基线皮质厚度是否能够可靠地区分患抑郁症的青少年和未患任何轴I障碍的青少年。通过子采样交叉验证分类得到的准确率用于评估分类器性能。基线皮质厚度正确预测了抑郁症的未来发作,总体准确率为70%(敏感性69%,特异性70%;p = 0.021)。对支持向量机特征权重的检查表明,右侧内侧眶额叶、右侧中央前回、左侧前扣带回和双侧岛叶皮质对该分类的贡献最大。这些发现表明皮质灰质结构可以预测随后抑郁症的发作。未来研究的一个重要方向是阐明这些灰质结构异常增加患该疾病风险的机制。