Kim Jongwoo, Tran Loc, Peto Tunde, Chew Emily Y
Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT7 1NN, UK.
Diagnostics (Basel). 2022 Apr 24;12(5):1063. doi: 10.3390/diagnostics12051063.
Glaucoma is a leading cause of irreversible vision loss that gradually damages the optic nerve. In ophthalmic fundus images, measurements of the cup to optic disc (CD) ratio, CD area ratio, neuroretinal rim to optic disc (RD) area ratio, and rim thickness are key measures to screen for potential glaucomatous damage. We propose an automatic method using deep learning algorithms to segment the optic disc and cup and to estimate the key measures. The proposed method comprises three steps: The Region of Interest (ROI) (location of the optic disc) detection from a fundus image using Mask R-CNN, the optic disc and cup segmentation from the ROI using the proposed Multiscale Average Pooling Net (MAPNet), and the estimation of the key measures. Our segmentation results using 1099 fundus images show 0.9381 Jaccard Index (JI) and 0.9679 Dice Coefficient (DC) for the optic disc and 0.8222 JI and 0.8996 DC for the cup. The average CD, CD area, and RD ratio errors are 0.0451, 0.0376, and 0.0376, respectively. The average disc, cup, and rim radius ratio errors are 0.0500, 0.2257, and 0.2166, respectively. Our method performs well in estimating the key measures and shows potential to work within clinical pathways once fully implemented.
青光眼是导致不可逆视力丧失的主要原因,它会逐渐损害视神经。在眼底图像中,杯盘比、杯盘面积比、神经视网膜边缘与视盘面积比以及边缘厚度的测量是筛查潜在青光眼性损害的关键指标。我们提出了一种使用深度学习算法的自动方法,用于对视盘和视杯进行分割并估计关键指标。所提出的方法包括三个步骤:使用Mask R-CNN从眼底图像中检测感兴趣区域(ROI)(视盘位置),使用所提出的多尺度平均池化网络(MAPNet)从ROI中对视盘和视杯进行分割,以及估计关键指标。我们使用1099张眼底图像的分割结果显示,视盘的杰卡德指数(JI)为0.9381,骰子系数(DC)为0.9679;视杯的JI为0.8222,DC为0.8996。杯盘比、杯盘面积比和视网膜神经纤维层与视盘面积比的平均误差分别为0.0451、0.0376和0.0376。视盘、视杯和边缘半径比的平均误差分别为0.0500、0.2257和0.2166。我们的方法在估计关键指标方面表现良好,一旦全面实施,显示出在临床路径中发挥作用的潜力。