Cheung Michael J, Kovačević Natasa, Fatima Zainab, Mišić Bratislav, McIntosh Anthony R
Rotman Research Institute, Baycrest Centre, 3560 Bathurst Street, Toronto, ON, Canada M6A 2E1.
Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA.
Neuroimage. 2016 Jan 1;124(Pt A):181-193. doi: 10.1016/j.neuroimage.2015.08.045. Epub 2015 Aug 28.
The emphasis of modern neurobiological theories has recently shifted from the independent function of brain areas to their interactions in the context of whole-brain networks. As a result, neuroimaging methods and analyses have also increasingly focused on network discovery. Magnetoencephalography (MEG) is a neuroimaging modality that captures neural activity with a high degree of temporal specificity, providing detailed, time varying maps of neural activity. Partial least squares (PLS) analysis is a multivariate framework that can be used to isolate distributed spatiotemporal patterns of neural activity that differentiate groups or cognitive tasks, to relate neural activity to behavior, and to capture large-scale network interactions. Here we introduce [MEG]PLS, a MATLAB-based platform that streamlines MEG data preprocessing, source reconstruction and PLS analysis in a single unified framework. [MEG]PLS facilitates MRI preprocessing, including segmentation and coregistration, MEG preprocessing, including filtering, epoching, and artifact correction, MEG sensor analysis, in both time and frequency domains, MEG source analysis, including multiple head models and beamforming algorithms, and combines these with a suite of PLS analyses. The pipeline is open-source and modular, utilizing functions from FieldTrip (Donders, NL), AFNI (NIMH, USA), SPM8 (UCL, UK) and PLScmd (Baycrest, CAN), which are extensively supported and continually developed by their respective communities. [MEG]PLS is flexible, providing both a graphical user interface and command-line options, depending on the needs of the user. A visualization suite allows multiple types of data and analyses to be displayed and includes 4-D montage functionality. [MEG]PLS is freely available under the GNU public license (http://meg-pls.weebly.com).
现代神经生物学理论的重点最近已从脑区的独立功能转向它们在全脑网络背景下的相互作用。因此,神经成像方法和分析也越来越关注网络发现。脑磁图(MEG)是一种神经成像方式,能够以高度的时间特异性捕捉神经活动,提供神经活动的详细、随时间变化的图谱。偏最小二乘法(PLS)分析是一个多变量框架,可用于分离区分不同组或认知任务的神经活动的分布式时空模式,将神经活动与行为联系起来,并捕捉大规模网络相互作用。在这里,我们介绍[MEG]PLS,这是一个基于MATLAB的平台,它在一个统一的框架中简化了MEG数据预处理、源重建和PLS分析。[MEG]PLS便于进行MRI预处理,包括分割和配准,MEG预处理,包括滤波、分段和伪迹校正,MEG传感器分析,包括时域和频域分析,MEG源分析,包括多种头部模型和波束形成算法,并将这些与一系列PLS分析相结合。该流程是开源且模块化的,利用了来自FieldTrip(荷兰东德斯)、AFNI(美国国立精神卫生研究所)、SPM8(英国伦敦大学学院)和PLScmd(加拿大贝克里斯特)的功能,这些功能得到了各自社区的广泛支持并不断发展。[MEG]PLS很灵活,根据用户需求提供图形用户界面和命令行选项。一个可视化套件允许显示多种类型的数据和分析,并包括4D蒙太奇功能。[MEG]PLS可根据GNU公共许可证免费获取(http://meg-pls.weebly.com)。