Konduri Girija G, Afolayan Adeleye J, Eis Annie, Pritchard Kirkwood A, Teng Ru-Jeng
Department of Pediatrics, Cardiovascular Research Center and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin; and
Department of Pediatrics, Cardiovascular Research Center and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin; and.
Am J Physiol Lung Cell Mol Physiol. 2015 Nov 1;309(9):L1009-17. doi: 10.1152/ajplung.00386.2014. Epub 2015 Aug 28.
An increase in oxygen tension at birth is one of the key signals that initiate pulmonary vasodilation in the fetal lung. We investigated the hypothesis that targeting endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane regulates reactive oxygen species (ROS) formation in the fetal pulmonary artery endothelial cells (PAEC) during this transition. We isolated PAEC and pulmonary arteries from 137-day gestation fetal lambs (term = 144 days). We exposed PAEC to a simulated transition from fetal to (3% O2) to normoxic (21%) or hyperoxic (95% O2) postnatal Po2 or to the nitric oxide synthase (NOS) agonist ATP. We assessed the effect of O2 and ATP on eNOS interactions with the mitochondrial outer membrane protein porin and with the chaperone hsp90. We also investigated the effect of decoy peptides that blocked eNOS interactions with porin or hsp90 on PAEC angiogenesis and vasodilator function of pulmonary arteries. Transition of fetal PAEC from 3 to 21% O2 but not to 95% O2 or exposure to ATP increased eNOS association with hsp90 and porin. Decoy peptides that blocked eNOS interactions decreased NO release, increased O2 consumption and mitochondrial ROS levels, and impaired PAEC angiogenesis. Decoy peptides also inhibited the relaxation responses of pulmonary artery rings and dilation of resistance size pulmonary arteries to ATP. The mitochondrial-antioxidant mito-ubiquinone restored the response to ATP in decoy peptide-treated pulmonary arteries. These data indicate that targeting eNOS to mitochondria decreases endothelial oxidative stress and facilitates vasodilation in fetal pulmonary circulation at birth.
出生时氧分压的升高是启动胎儿肺血管舒张的关键信号之一。我们研究了以下假说:在这一转变过程中,将内皮型一氧化氮合酶(eNOS)靶向定位于线粒体外膜可调节胎儿肺动脉内皮细胞(PAEC)中活性氧(ROS)的形成。我们从妊娠137天的胎羊(足月为144天)中分离出PAEC和肺动脉。我们将PAEC暴露于模拟的从胎儿期(3%氧气)到出生后常氧(21%)或高氧(95%氧气)的氧分压转变环境中,或给予一氧化氮合酶(NOS)激动剂ATP。我们评估了氧气和ATP对eNOS与线粒体外膜蛋白孔蛋白以及伴侣蛋白hsp90相互作用的影响。我们还研究了阻断eNOS与孔蛋白或hsp90相互作用的诱饵肽对PAEC血管生成和肺动脉舒张功能的影响。胎儿PAEC从3%氧气转变为21%氧气(而非95%氧气)或暴露于ATP会增加eNOS与hsp90和孔蛋白的结合。阻断eNOS相互作用的诱饵肽会减少一氧化氮释放,增加氧气消耗和线粒体ROS水平,并损害PAEC血管生成。诱饵肽还会抑制肺动脉环的舒张反应以及阻力型肺动脉对ATP的扩张。线粒体抗氧化剂线粒体泛醌可恢复诱饵肽处理的肺动脉对ATP的反应。这些数据表明,将eNOS靶向定位于线粒体可降低内皮氧化应激,并促进出生时胎儿肺循环中的血管舒张。