Department of Neurology, University of California, San Francisco, San Francisco, California, USA.
Nat Methods. 2012 Sep;9(9):917-22. doi: 10.1038/nmeth.2105. Epub 2012 Jul 15.
Current methods for studying central nervous system myelination necessitate permissive axonal substrates conducive to myelin wrapping by oligodendrocytes. We have developed a neuron-free culture system in which electron-spun nanofibers of varying sizes substitute for axons as a substrate for oligodendrocyte myelination, thereby allowing manipulation of the biophysical elements of axonal-oligodendroglial interactions. To investigate axonal regulation of myelination, this system effectively uncouples the role of molecular (inductive) cues from that of biophysical properties of the axon. We use this method to uncover the causation and sufficiency of fiber diameter in the initiation of concentric wrapping by rat oligodendrocytes. We also show that oligodendrocyte precursor cells display sensitivity to the biophysical properties of fiber diameter and initiate membrane ensheathment before differentiation. The use of nanofiber scaffolds will enable screening for potential therapeutic agents that promote oligodendrocyte differentiation and myelination and will also provide valuable insight into the processes involved in remyelination.
目前研究中枢神经系统髓鞘形成的方法需要有允许少突胶质细胞进行髓鞘包裹的许可轴突基质。我们开发了一种无神经元培养系统,其中不同大小的电子纺纳米纤维可以替代轴突作为少突胶质细胞髓鞘形成的基质,从而可以控制轴突-少突胶质细胞相互作用的生物物理要素。为了研究轴突对髓鞘形成的调节作用,该系统有效地将分子(诱导)线索的作用与轴突的生物物理特性的作用分离开来。我们使用这种方法来揭示纤维直径在大鼠少突胶质细胞的同心包裹起始中的因果关系和充分性。我们还表明,少突胶质前体细胞对纤维直径的生物物理特性敏感,并在分化前开始进行细胞膜包绕。纳米纤维支架的使用将能够筛选出促进少突胶质细胞分化和髓鞘形成的潜在治疗剂,并且还将为髓鞘再生所涉及的过程提供有价值的见解。