Suppr超能文献

使用7T磁共振成像的基底神经节概率图谱。

A probabilistic atlas of the basal ganglia using 7 T MRI.

作者信息

Keuken Max C, Forstmann Birte U

机构信息

Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Prinsengracht 130, 1018VZ Amsterdam, The Netherlands.

出版信息

Data Brief. 2015 Jul 31;4:577-82. doi: 10.1016/j.dib.2015.07.028. eCollection 2015 Sep.

Abstract

A common localization procedure in functional imaging studies includes the overlay of statistical parametric functional magnetic resonance imaging (fMRI) maps or coordinates with neuroanatomical atlases in standard space, e.g., MNI-space. This procedure allows the identification of specific brain regions. Most standard MRI software packages include a wide range of atlases but have a poor coverage of the subcortex. We estimated that approximately 7% of the known subcortical structures are mapped in standard MRI-compatible atlases [1]. Here we provide a data description of a subcortical probabilistic atlas based on ultra-high resolution in-vivo anatomical imaging using 7 T (T) MRI. The atlas includes six subcortical nuclei: the striatum (STR), the globus pallidus internal and external segment (GPi/e), the subthalamic nucleus (STN), the substantia nigra (SN), and the red nucleus (RN). These probabilistic atlases are shared on freely available platforms such as NITRC and NeuroVault and are published in NeuroImage "Quantifying inter-individual anatomical variability in the subcortex using 7 T structural MRI" [2].

摘要

功能成像研究中一种常见的定位方法包括将统计参数功能磁共振成像(fMRI)图谱或坐标与标准空间(如MNI空间)中的神经解剖图谱叠加。该方法可用于识别特定的脑区。大多数标准MRI软件包都包含多种图谱,但对皮质下区域的覆盖较差。我们估计,已知的皮质下结构中约7%已在标准MRI兼容图谱中绘制出来[1]。在此,我们提供了基于7T磁共振成像(MRI)的超高分辨率体内解剖成像的皮质下概率图谱的数据描述。该图谱包括六个皮质下核团:纹状体(STR)、苍白球内侧和外侧段(GPi/e)、丘脑底核(STN)、黑质(SN)和红核(RN)。这些概率图谱在NITRC和NeuroVault等免费平台上共享,并发表于《神经影像学》杂志的“使用7T结构MRI量化皮质下个体间解剖变异性”[2]。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d125/4543077/877b95f29ae0/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验