Suppr超能文献

基于 7 特斯拉 MRI 数据的人类腹侧被盖区(VTA)概率图谱。

A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data.

机构信息

Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS, Amsterdam, The Netherlands.

Cognitive Psychology Unit and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.

出版信息

Brain Struct Funct. 2021 May;226(4):1155-1167. doi: 10.1007/s00429-021-02231-w. Epub 2021 Feb 12.

Abstract

Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.

摘要

功能磁共振成像(fMRI)BOLD 信号通常通过使用神经解剖学图谱进行定位,这些图谱也可用于感兴趣区域分析。然而,现有的 MRI 图谱在对皮质下结构进行成像时存在严重的局限性:目前的图谱仅能捕捉到 455 个皮质下核中的 7%。这突出了在大脑深部绘制较小核的普遍困难,而这可以使用超高场 7 特斯拉(T)MRI 来解决。腹侧被盖区(VTA)是一种皮质下结构,在奖励处理、学习和记忆中起着关键作用。尽管在认知神经科学中对该核有很大的兴趣,但目前还没有基于 7 T MRI 数据的、涵盖整个 VTA 区域的可用的、解剖精确的 VTA 图谱。在这里,我们首先提供了一种多模态 VTA 成像和描绘的方案。然后,我们提供了基于活体 7 T MRI 数据的概率 VTA 图谱的数据描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc2e/8036186/f6ec67b3431b/429_2021_2231_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验