Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
Centre for Medical &Molecular Bioscience, Illawarra Health &Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.
Nature. 2015 Sep 17;525(7569):394-8. doi: 10.1038/nature14866. Epub 2015 Aug 31.
In all domains of life, DNA synthesis occurs bidirectionally from replication origins. Despite variable rates of replication fork progression, fork convergence often occurs at specific sites. Escherichia coli sets a 'replication fork trap' that allows the first arriving fork to enter but not to leave the terminus region. The trap is set by oppositely oriented Tus-bound Ter sites that block forks on approach from only one direction. However, the efficiency of fork blockage by Tus-Ter does not exceed 50% in vivo despite its apparent ability to almost permanently arrest replication forks in vitro. Here we use data from single-molecule DNA replication assays and structural studies to show that both polarity and fork-arrest efficiency are determined by a competition between rates of Tus displacement and rearrangement of Tus-Ter interactions that leads to blockage of slower moving replisomes by two distinct mechanisms. To our knowledge this is the first example where intrinsic differences in rates of individual replisomes have different biological outcomes.
在生命的所有领域中,DNA 合成都是从复制原点双向进行的。尽管复制叉的推进速度不同,但叉的汇聚通常发生在特定的位点。大肠杆菌设置了一个“复制叉陷阱”,允许第一个到达的叉进入但不能离开末端区域。该陷阱是由相反方向结合 Tus 的 Ter 位点形成的,它们只能从一个方向阻止叉的前进。然而,尽管 Tus-Ter 在线粒体体外几乎可以永久地阻止复制叉,但在体内,叉阻断的效率不超过 50%。在这里,我们使用来自单分子 DNA 复制实验和结构研究的数据表明,极性和叉阻断效率是由 Tus 置换和 Tus-Ter 相互作用重排的速率之间的竞争决定的,这导致两个不同的机制阻止较慢移动的复制体。据我们所知,这是第一个个体复制体的内在差异具有不同生物学结果的例子。