Suppr超能文献

使用泛光照明自适应光学技术评估测量和表征黄斑视锥细胞密度的不同采样方法

Assessment of Different Sampling Methods for Measuring and Representing Macular Cone Density Using Flood-Illuminated Adaptive Optics.

作者信息

Feng Shu, Gale Michael J, Fay Jonathan D, Faridi Ambar, Titus Hope E, Garg Anupam K, Michaels Keith V, Erker Laura R, Peters Dawn, Smith Travis B, Pennesi Mark E

出版信息

Invest Ophthalmol Vis Sci. 2015 Sep;56(10):5751-63. doi: 10.1167/iovs.15-16954.

Abstract

PURPOSE

To describe a standardized flood-illuminated adaptive optics (AO) imaging protocol suitable for the clinical setting and to assess sampling methods for measuring cone density.

METHODS

Cone density was calculated following three measurement protocols: 50 × 50-μm sampling window values every 0.5° along the horizontal and vertical meridians (fixed-interval method), the mean density of expanding 0.5°-wide arcuate areas in the nasal, temporal, superior, and inferior quadrants (arcuate mean method), and the peak cone density of a 50 × 50-μm sampling window within expanding arcuate areas near the meridian (peak density method). Repeated imaging was performed in nine subjects to determine intersession repeatability of cone density.

RESULTS

Cone density montages could be created for 67 of the 74 subjects. Image quality was determined to be adequate for automated cone counting for 35 (52%) of the 67 subjects. We found that cone density varied with different sampling methods and regions tested. In the nasal and temporal quadrants, peak density most closely resembled histological data, whereas the arcuate mean and fixed-interval methods tended to underestimate the density compared with histological data. However, in the inferior and superior quadrants, arcuate mean and fixed-interval methods most closely matched histological data, whereas the peak density method overestimated cone density compared with histological data. Intersession repeatability testing showed that repeatability was greatest when sampling by arcuate mean and lowest when sampling by fixed interval.

CONCLUSIONS

We show that different methods of sampling can significantly affect cone density measurements. Therefore, care must be taken when interpreting cone density results, even in a normal population.

摘要

目的

描述一种适用于临床环境的标准化泛光照明自适应光学(AO)成像方案,并评估测量视锥细胞密度的采样方法。

方法

按照三种测量方案计算视锥细胞密度:沿水平和垂直子午线每隔0.5°的50×50μm采样窗口值(固定间隔法)、鼻侧、颞侧、上方和下方象限中扩展的0.5°宽弧形区域的平均密度(弧形平均法)以及子午线附近扩展弧形区域内50×50μm采样窗口的视锥细胞峰值密度(峰值密度法)。对9名受试者进行重复成像,以确定视锥细胞密度的会话间重复性。

结果

74名受试者中有67名可以创建视锥细胞密度蒙太奇图像。确定67名受试者中有35名(52%)的图像质量足以进行自动视锥细胞计数。我们发现视锥细胞密度随不同的采样方法和测试区域而变化。在鼻侧和颞侧象限,峰值密度与组织学数据最为相似,而与组织学数据相比,弧形平均法和固定间隔法往往低估了密度。然而,在下方和上方象限,弧形平均法和固定间隔法与组织学数据最匹配,而与组织学数据相比,峰值密度法高估了视锥细胞密度。会话间重复性测试表明,采用弧形平均法采样时重复性最大,采用固定间隔法采样时重复性最小。

结论

我们表明,不同的采样方法会显著影响视锥细胞密度测量。因此,即使在正常人群中,解释视锥细胞密度结果时也必须谨慎。

相似文献

2
Technical factors influencing cone packing density estimates in adaptive optics flood illuminated retinal images.
PLoS One. 2014 Sep 9;9(9):e107402. doi: 10.1371/journal.pone.0107402. eCollection 2014.
3
Cone photoreceptor definition on adaptive optics retinal imaging.
Br J Ophthalmol. 2014 Aug;98(8):1073-9. doi: 10.1136/bjophthalmol-2013-304615. Epub 2014 Apr 11.
4
Modeling Human Macular Cone Photoreceptor Spatial Distribution.
Invest Ophthalmol Vis Sci. 2024 Jul 1;65(8):14. doi: 10.1167/iovs.65.8.14.
5
Variability in Human Cone Topography Assessed by Adaptive Optics Scanning Laser Ophthalmoscopy.
Am J Ophthalmol. 2015 Aug;160(2):290-300.e1. doi: 10.1016/j.ajo.2015.04.034. Epub 2015 Apr 30.
7
High-resolution retinal imaging of cone-rod dystrophy.
Ophthalmology. 2006 Jun;113(6):1019.e1. doi: 10.1016/j.ophtha.2006.01.056. Epub 2006 May 2.
8
Structural and Function Correlation of Cone Packing Utilizing Adaptive Optics and Microperimetry.
Biomed Res Int. 2015;2015:968672. doi: 10.1155/2015/968672. Epub 2015 Jun 8.

引用本文的文献

1
Automated Cone Photoreceptor Detection in Adaptive Optics Flood Illumination Ophthalmoscopy.
Ophthalmol Sci. 2024 Dec 12;5(3):100675. doi: 10.1016/j.xops.2024.100675. eCollection 2025 May-Jun.
2
From Cellular to Metabolic: Advances in Imaging of Inherited Retinal Diseases.
Diagnostics (Basel). 2024 Dec 26;15(1):28. doi: 10.3390/diagnostics15010028.
3
The effect of sampling window size on topographical maps of foveal cone density.
Front Ophthalmol (Lausanne). 2024 Apr 9;4:1348950. doi: 10.3389/fopht.2024.1348950. eCollection 2024.
4
Pearls and Pitfalls of Adaptive Optics Ophthalmoscopy in Inherited Retinal Diseases.
Diagnostics (Basel). 2023 Jul 19;13(14):2413. doi: 10.3390/diagnostics13142413.
5
Reduced Cone Density Is Associated with Multiple Sclerosis.
Ophthalmol Sci. 2023 Apr 13;3(3):100308. doi: 10.1016/j.xops.2023.100308. eCollection 2023 Sep.
6
Change in Cone Structure Over 24 Months in USH2A-Related Retinal Degeneration.
Am J Ophthalmol. 2023 Aug;252:77-93. doi: 10.1016/j.ajo.2023.03.006. Epub 2023 Mar 21.
7
Comprehensive automatic processing and analysis of adaptive optics flood illumination retinal images on healthy subjects.
Biomed Opt Express. 2023 Jan 30;14(2):945-970. doi: 10.1364/BOE.471881. eCollection 2023 Feb 1.
8
10
Impact of Reference Center Choice on Adaptive Optics Imaging Cone Mosaic Analysis.
Invest Ophthalmol Vis Sci. 2022 Apr 1;63(4):12. doi: 10.1167/iovs.63.4.12.

本文引用的文献

1
High-resolution adaptive optics retinal imaging of cellular structure in choroideremia.
Invest Ophthalmol Vis Sci. 2014 Sep 4;55(10):6381-97. doi: 10.1167/iovs.13-13454.
2
Retinal microstructural changes in eyes with resolved branch retinal vein occlusion: an adaptive optics scanning laser ophthalmoscopy study.
Am J Ophthalmol. 2014 Jun;157(6):1239-1249.e3. doi: 10.1016/j.ajo.2014.02.026. Epub 2014 Feb 14.
3
In vivo imaging of retinal pigment epithelium cells in age related macular degeneration.
Biomed Opt Express. 2013 Oct 18;4(11):2527-39. doi: 10.1364/BOE.4.002527. eCollection 2013.
4
5
Cone abnormalities in fundus albipunctatus associated with RDH5 mutations assessed using adaptive optics scanning laser ophthalmoscopy.
Am J Ophthalmol. 2014 Mar;157(3):558-70.e1-4. doi: 10.1016/j.ajo.2013.10.021. Epub 2013 Nov 16.
6
Assessing the cone photoreceptor mosaic in eyes with pseudodrusen and soft Drusen in vivo using adaptive optics imaging.
Ophthalmology. 2014 Feb;121(2):545-51. doi: 10.1016/j.ophtha.2013.09.026. Epub 2013 Oct 30.
7
Retinal structure and function in achromatopsia: implications for gene therapy.
Ophthalmology. 2014 Jan;121(1):234-245. doi: 10.1016/j.ophtha.2013.08.017. Epub 2013 Oct 20.
8
F45L Allele Does Not Cause Autosomal Dominant Retinitis Pigmentosa in a Large Caucasian Family.
Transl Vis Sci Technol. 2013 Feb;2(2):4. doi: 10.1167/tvst.2.2.4. Epub 2013 Mar 13.
9
Influence of sampling window size and orientation on parafoveal cone packing density.
Biomed Opt Express. 2013 Jul 12;4(8):1318-31. doi: 10.1364/BOE.4.001318. eCollection 2013.
10
A lensing effect of inner retinal cysts on images of the photoreceptor mosaic.
Retina. 2014 Feb;34(2):421-2. doi: 10.1097/IAE.0b013e3182a2f50c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验