Alam Maksudul, Deng Xinwei, Philipson Casandra, Bassaganya-Riera Josep, Bisset Keith, Carbo Adria, Eubank Stephen, Hontecillas Raquel, Hoops Stefan, Mei Yongguo, Abedi Vida, Marathe Madhav
Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America; Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America; Department of Computer Science, Virginia Tech, Blacksburg, Virginia, United States of America.
Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America; Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States of America.
PLoS One. 2015 Sep 1;10(9):e0136139. doi: 10.1371/journal.pone.0136139. eCollection 2015.
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.
基于主体的模型(ABM)被广泛用于研究免疫系统,为基础系统提供了一个过程性和交互式的视角。组件之间的相互作用以及单个对象的行为被过程性地描述为内部状态和局部相互作用的函数,而这些相互作用在本质上通常是随机的。此类模型通常具有复杂的结构,并且由大量建模参数组成。确定控制系统结果的关键建模参数极具挑战性。敏感性分析在量化建模参数对大规模相互作用系统(包括大型复杂ABM)的影响方面起着至关重要的作用。执行模拟的高计算成本阻碍了使用详尽参数设置进行实验。分析此类复杂系统的现有技术通常侧重于局部敏感性分析,即一次分析一个参数,或者特定参数设置的紧密“邻域”。然而,这些方法不足以准确测量参数的不确定性和敏感性,因为它们忽略了参数对系统的全局影响。在本文中,我们开发了新颖的实验设计和分析技术,以对大规模ABM进行全局和局部敏感性分析。所提出的方法可以有效地识别最重要的参数,并量化它们对系统结果的贡献。我们使用针对胃黏膜幽门螺杆菌定植的免疫反应计算模型,展示了针对大规模ABM环境肠道免疫模拟器(ENISI)所提出的方法。